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Abstract

Modern society is undergoing a fundamental change in the way we interact with technology.

More and more devices are becoming “smart” by gaining advanced computation capabilities

and communication interfaces, from household appliances over transportation systems to large-

scale networks like the power grid. Recording, processing, and exchanging digital information

is thus becoming increasingly important. As a growing share of devices is nowadays mobile

and hence battery-powered, a particular interest in efficient digital signal processing techniques

emerges.

This thesis contributes to this goal by demonstrating methods for finding efficient algebraic

solutions to various applications of multi-channel digital signal processing. These may not

always result in the best possible system performance. However, they often come close while

being significantly simpler to describe and to implement. The simpler description facilitates a

thorough analysis of their performance which is crucial to design robust and reliable systems.

The fact that they rely on standard algebraic methods only allows their rapid implementation

and test under real-world conditions.

We demonstrate this concept in three different application areas. First, we present a semi-

algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimen-

sional signals, a very fundamental tool in multilinear algebra with applications ranging from

chemistry over communications to image compression. Compared to state-of-the art itera-

tive solutions, our framework offers a flexible control of the complexity-accuracy trade-off and

is less sensitive to badly conditioned data. The second application area is multidimensional

subspace-based high-resolution parameter estimation with applications in RADAR, wave prop-

agation modeling, or biomedical imaging. We demonstrate that multidimensional signals can

be represented by tensors, providing a convenient description and allowing to exploit the

multidimensional structure in a better way than using matrices only. Based on this idea,

we introduce the tensor-based subspace estimate which can be applied to enhance existing

matrix-based parameter estimation schemes significantly. We demonstrate the enhancements

by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced

versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source

amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the

resulting estimation accuracy, we derive a framework for the analytical performance assessment

of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation ex-
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Abstract

pansion. Our results are more general than existing analytical results since we do not need

any assumptions about the distribution of the desired signal and the noise and we do not

require the number of samples to be large. At the end, we obtain simplified expressions for the

mean square estimation error that provide insights into efficiency of the methods under various

conditions. The third application area is bidirectional relay-assisted communications. Due to

its particularly low complexity and its efficient use of the radio resources we choose two-way

relaying with a MIMO amplify and forward relay. We demonstrate that the required channel

knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We

also discuss the design of the relay amplification matrix in such a setting. Existing approaches

are either based on complicated numerical optimization procedures or on ad-hoc solutions

that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose

algebraic solutions that are inspired by these performance metrics and therefore perform well

while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing

(ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored

ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for

the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which

finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Nu-

merical simulations evaluate the resulting system performance in terms of bit error rate and

system sum rate which demonstrates the effectiveness of the proposed algebraic solutions.
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Zusammenfassung

Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise

wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter – sie verfügen

über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen.

Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen

überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der

Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache,

dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist,

begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu ge-

stalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden

Datenmengen zugute.

Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen

für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze

liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht

nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache

Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den

Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur

gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung

und den Test unter realen Bedingungen.

Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert.

Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen

(CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr

grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum

von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden

iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand

und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine

schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen

wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Si-

gnale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder

bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale

Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine

bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee
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Zusammenfassung

entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann

um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss

exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versio-

nen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT),

nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) aus-

nutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein

Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger

Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser An-

satz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und

Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse be-

liebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen

Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Be-

dingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit

Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe

von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gu-

tes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis

mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem

werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Beste-

hende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf

Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb

schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von re-

levanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das

algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Mo-

difikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem

die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum

Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simu-

lationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer

Datenrate bewertet und ihre Effektivität gezeigt.
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1. Introduction and scope of the thesis

Digital Signal Processing has become an indispensable part of the everyday life of our modern

society. The ever-increasing growth of transistor density predicted by Moore’s law has cre-

ated a vast amount of devices with significant computing power. These devices range from

large stationary devices like industrial control systems over nomadic devices such as laptop

computers to battery powered hand-held devices such as tablets, mobile phones, or even small

autonomous wireless sensors.

This development is not likely to stop anytime soon. In fact, we are witnessing a funda-

mental change in the way we interact with technology. More and more devices are becoming

“smart” by gaining access to enhanced computing power and communication abilities, such as

an Internet access. These range from simple devices such as home appliances to wide-ranged

networks such as the power grid or transportation systems. Each device has the ability to

collect, process, and exchange digital information, which implies a strong call for novel digital

signal processing techniques.

Whenever such a fundamental transformation takes place, it opens up exciting new possibil-

ities. The prospects are seemingly endless: smart devices could optimize the way we interact

with them or even interact autonomously, alleviating the need for human interaction. This can

for instance lead to a more efficient use of scarce and depleting resources, most prominently

energy, which is one of the most urgent challenges of our modern society. Another benefit can

be safety, for example by the development of smart cars that can optimize traffic flow and

minimize the risk of fatal accidents.

However, the list of opportunities is no shorter than the list of challenges and risks we should

be aware of. The more we start relying on such systems, the more crucial become aspects like

reliability, robustness, security, privacy, or efficiency. As increased computation power also

implies increased energy consumption, the need to find particularly efficient signal processing

techniques becomes evident. This is becoming increasingly important also since many of the

nodes operate on batteries.

With new application areas of digital signal processing emerging constantly, it is compelling

to find very sophisticated numerical procedures for reaching the optimal performance given

some system design target. This may be one of the reasons why the area of numerical convex

optimization [BV04] has experienced a prosperous decade in which more and more applications

have been identified where cost or utility functions are convex or can be well approximated

1
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by convex functions [LVBL98, LY06b, LSS06]. While the existing algorithms to solve such

problems are guaranteed to have a polynomial-time complexity, they are still iterative in na-

ture. This is practically problematic for a number of reasons. Firstly, we have no deterministic

description of the actual complexity in terms of number of multiplications and additions since

the number of iterations is in general data-dependent. In fact, in light of the price paid for

complexity, namely energy consumption, the ability to control the performance-complexity

trade-off would be desirable. Some applications call for on-line implementations which are still

difficult to achieve for convex optimization based solutions. A second drawback is that it is

hard to analyze such algorithms analytically in order to objectively argue about their perfor-

mance due to their iterative nature. Finally, it is often not easy to come up with a generic and

robust implementation since the methods may contain a number of adjustable parameters one

has to choose by hand.

These observations serve as the main motivation for the general train of thought of this the-

sis, which is to find simple algebraic solutions for various signal processing related problems.

They may not always provide the optimal performance. But their simplicity enables us to

analyze their performance in-depth and gain insights into the loss of optimality or the behav-

ior under various conditions, e.g., the robustness against violations of the model assumptions.

Low-complexity solutions are also attractive in light of energy consumption, which is crucial

considering the fact that more and more devices performing signal processing tasks are in fact

battery-powered mobile devices. Another advantage is that such algorithms are straightfor-

wardly implemented and can be put to practice rather rapidly as they only rely on standard

algebraic methods which are already available on modern DSP hardware. It is important to

emphasize that the prime focus of the thesis is less on delivering the ultimate best possible

solution for a given problem but more on the methodical side. We aim to provide methods

how such algebraic solutions can be found in general or how existing algebraic solutions can

be enhanced by simple algebraic modifications.

We demonstrate this idea in three different application areas. To enhance the overall struc-

ture of the thesis, each application area is presented in a separate part of the thesis which can

be read independently of each other. To outline the common algebraic tools that are used in

the three main parts, they are preceded by one part introducing the fundamental algebraic

concepts. The following sections provide a brief motivation for the different parts, outlining

the possible applications, the open problems of the existing solutions, and summarizing the

major contributions. A more detailed introduction for each part is presented at the beginning

of each part separately, i.e., in the Chapters 2, 6, 9, and 14, respectively.

2



1.1. Part I: Advanced Algebraic Concepts

1.1. Part I: Advanced Algebraic Concepts

The first part of the thesis is devoted to the mathematical fundamentals that are used to

derive efficient algebraic solutions for the application areas discussed in the subsequent three

parts (tensor decompositions, subspace-based multi-dimensional parameter estimation, and

two-way relaying) of the thesis. The main goal is to align the existing results which appear

scattered over many books and papers in a systematic manner. We aim at presenting a compact

collection that can directly be used by engineers without having to untangle the very formal

language used in mathematical textbooks [Rud76, Mun00, DF03]. There have been previous

attempts to creating such collections, e.g., the “matrix cookbook” [PP08]. However, despite

being frequently cited, it is not maintained by the authors anymore. Moreover, like other

well-cited compendia [MN95, Bre78, GvL80], it is lacking certain concepts that are becoming

increasingly important in the signal processing community, for instance, the treatment of

multilinear (tensor) algebra for which a compact “cookbook”-style compendium is still missing.

Therefore, a tensor extension of matrix-based compendia is another goal of this part of the

thesis.

We provide a motivation and an overview in Chapter 2. The subsequent Chapter 3 is then

devoted to matrix-based algebraic concepts. In particular, we focus on linear and quadratic

forms and discuss how an expression containing linear or quadratic expression can be refor-

mulated in a “canonical” manner. The main advantage of these “canonical” expressions is

that they often allow to apply well-known solutions, e.g., a Least-Squares optimal solution for

unknown parameters in a linear form (via the method of Least Squares) or the maximization

or minimization of a quadratic form (via eigenvectors). As an example, the Least-Squares op-

timal factorization of a Kronecker product and a column-wise Kronecker (Khatri-Rao) product

is shown and its applications are outlined.

In Chapter 4, we discuss multilinear (tensor) algebraic concepts. For signals that are in-

herently R-dimensional for R > 2 (e.g., measured over spatial dimensions, frequency, and

time), R-way arrays provide a representation of the sampled signal in its native multidimen-

sional form. Such a representation enables us to exploit the rich multidimensional struc-

ture, often resulting in a benefit (e.g., improved estimation accuracy). As we outline in

Chapter 4 the applications where such a benefit can be exploited are very diverse, exam-

ples include face recognition [VT02a], image compression [SL01], hyperspectral image de-

noising [LB08], data mining [STF06], social network analysis [ACKY05], pattern recognition

[SE07], array signal processing [SBG00], communications [SGB00] biomedical signal process-

ing [Möc88, MHH+06, dVVdL+07], or numerical mathematics [HKT05]. We have successfully
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applied tensors for prediction of frequency- and time-selective MIMO channels [MGH08], chan-

nel estimation for two-way relaying [RH10c] (see also Part IV of this thesis), subspace-based

multidimensional parameter estimation (see also Part III of this thesis) and biomedical signal

processing [JRW+08, WRH+09, WJG+10b, WJR+10, WJG+10a, BCA+10, BCA+12].
The necessary algebraic concepts to manipulate R-D signals are summarized in Chapter 4,

providing many useful properties that are used in the later parts of the thesis and serving as

a reference for engineers that want to apply multilinear algebra to signal processing applica-

tions. We extend existing tensor surveys like [KB09, CLdA09] in some aspects, for instance,

by discussing consistent permutations of tensor unfoldings which are needed for many of the

derivations in the performance analysis of subspace-based multidimensional parameter estima-

tion schemes discussed in Part III of the thesis.

The final Chapter 5 of this part of the thesis provides a summary and links the results to

the later parts of the thesis. Proofs and derivations of Part I are found in Appendix B.

1.2. Part II: Semi-Algebraic CP decomposition (SECSI)

In this part of the thesis we focus on the decomposition of a given multidimensional signal into

a sum of rank-one components, which is referred to as CANDECOMP / PARAFAC [CC70,

Har70], or Canonical Polyadic (CP) decomposition. There exist many applications where

the underlying signal of interest can be represented by a trilinear or multilinear CP model.

These range from psychometrics [CC70, Har70, KdL80] and chemometrics [AB03] over ar-

ray signal processing [SBG00] and communications [SGB00] to biomedical signal process-

ing [Möc88, MHH+06, dVVdL+07, WRH+09, BCA+12], image compression [SL01] or numerical

mathematics [HKT05] (see also [KB09] and references therein). The success of the CP decom-

position is mainly due to its inherent essential uniqueness, which allows to decompose a given

signal into components without posing additional constraints artificially (as required for ma-

trix decompositions). A detailed motivation, the data model, and a state-of-the-art review is

presented in Chapter 6.

The most prominent approach for finding the CP decomposition relies on an Alternating

Least Squares (ALS) procedure [KdL80, BSG99]. The original idea goes back to [CC70,

Har70] and many improvements have been proposed since then, e.g., enhanced line search

(ELS) [RC05, RCH08] or Tikhonov regularization [NdLK08]. The main shortcoming of ALS-

based algorithms is that they may require a large number of iterations to converge and are not

guaranteed to reach the global optimum. This motivates the need for alternative approaches

that are more reliable and have a lower computational complexity. To overcome these issues,
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we introduce a semi-algebraic framework for approximate CP decompositions based on a set

of Simultaneous Matrix Diagonalization (SMD) problems in Chapter 7. The links between the

CP decomposition and Simultaneous Matrix Diagonalizations (SMDs) were already pointed

out by [vdVP96, AFCC04] for the symmetric case and by [dL04a, dL06] for the non-symmetric

case. Recently, [AFCC04] was also generalized to the non-symmetric case [LA11], which differs

from [dL04a] in the way the unfoldings are defined. However, these approaches have in common

that only a single SMD is solved and all parameters are estimated from the solution of this

SMD. We have extended these approaches in [RH08b, RH09a] by showing that due to the

structure of the problem, several SMDs can be constructed, each giving rise to one candidate

solution for the CP decomposition. The final estimate can then be selected in a subsequent

step. This framework opens up many degrees of freedom to flexibly control the complexity-

accuracy trade-off. This allows to tune the CP algorithm to the specific needs of the application

at hand. We show via simulations that compared to state of the art CP algorithms we obtain

enhanced robustness, reduced sensitivity to correlation in the data, and reduced computational

complexity.

A summary and an outlook to future work related to CP decompositions is provided in

Chapter 8. Moreover, proofs and derivations of Part II are found in Appendix C.

1.3. Part III: Subspace-Based Parameter Estimation

Part III is devoted to subspace-based high-resolution parameter estimation from multidimen-

sional signals. One example for such signals are multi-dimensional harmonics which are sam-

pled on a multi-dimensional lattice. Here, the goal is to estimate the frequencies of these

harmonics in all dimensions, which is referred to as harmonic retrieval [KAB83, AR88]. The

multi-dimensional harmonic retrieval problem appears in many different application areas.

For instance, it is required to fit the parameters of a double-directional MIMO channel

model [ZFDW00, SMB01, HTR04] from MIMO channel sounder measurements [ZHM+00].
This is a key step to developing more sophisticated and realistic channel models that can then

be used to develop and test transmission concepts for next-generation wireless communication

systems. It has been shown that under idealized conditions, the channel transfer function

corresponding to this model can be described by a R-D harmonic signal [RHST01] where the

frequencies in the separate dimensions are linked to physical paramters of the propagation,

such as directions of arrival, directions of departure, time delay, or Doppler shift. A related

application is MIMO Radar [JLL09, NS10]. As shown in [NS10], single-pulse and multi-pulse

bistatic Radar configurations give rise to a 2-D and a 3-D harmonic retrieval problem, respec-
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tively. Another application is 2-D nuclear magnetic resonance (NMR) spectroscopy [BL86]

where a molecular system is excited with a 2-D Radio Frequency (RF) pulse sequence and the

measured signal can be modeled as a sum of 2-D (damped) harmonics.

Chapter 9 provides a more detailed motivation and a state-of-the-art survey. Moreover, we

develop the multidimensional data model using two application examples (direction of arrival

estimation and geometry-based parametric channel modeling). We discuss separability and

centro-symmetry of 2-D antenna arrays and show that arbitrary beam patterns can be allowed

as long as all the elements share the same beam pattern.

A major shortcoming of existing multidimensional parameter estimation schemes is that

the rich structure of the multidimensional signals is not fully exploited since the signals are

represented by matrices that only possess two dimensions (rows and columns). As we discuss

in Part III of the thesis, if multidimensional signals are sampled on a separable R-dimensional

grid, this multidimensional structure can be exploited in many ways by virtue of multilinear

algebra introduced in Part I of the thesis. We develop a tensor-based data model for multidi-

mensional signals in Chapter 9. Based on this model we show in Chapter 10 that already in

the subspace estimation step, applying tensor calculus gives rise to an enhanced tensor-based

signal subspace estimate [RHD06, HRD08]. This estimate can be used to improve arbitrary

subspace-based R-D subspace-based parameter estimation algorithms. We also show that this

subspace can be found by applying a structured projection to the (unstructured) matrix-based

subspace estimate which filters out all undesired components that do not obey the required

structure. This provides an intuitive understanding for the reason why the accuracy is actually

improved. The link was first shown by us for the special case R = 2 in [RBHW09], the proof

for the general R-D case is presented in Appendix D.3 this thesis.

We then apply this enhanced subspace to the family of R-D Estimation of Signal Parameters

via Rotational Invariance Techniques (ESPRIT)-type algorithms in Chapter 11 and demon-

strate that they can conveniently be formulated in terms of tensor notation, which in fact

simplifies their description [HRD08]. Moreover, we obtain an improved parameter estimation

accuracy due to the enhanced tensor-based subspace estimate. We also show that this tensor

formulation allows to enhance the algorithms even further. For instance, the overdetermined

shift invariance equations in ESPRIT-type algorithms can be solved with the tensor-based

TS-SLS algorithm [RH07b] which outperforms the matrix-based LS solution. Another en-

hancement to ESPRIT we discuss is the exploitation of a specific structure of the source

amplitudes. We show that if the sources transmit real-valued symbols only, this gives rise to

a specific symmetry in the data model which can be used to virtually double the number of

available sensors at the receiver. The resulting “non-circular (NC)” ESPRIT-type algorithms
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allow to resolve twice as many sources and yield an improved parameter estimation accu-

racy [HR04]. We also show how to combine both benefits, the multidimensionality and the

fact that the sources’ symbols are real-valued [RH09b]. It is a non-trivial combination, since

the way the sensors are virtually doubled in the matrix case destroys the separable sampling

grid required for the tensor-based algorithms. A mode-wise tensor augmentation is proposed

and the resulting NC Tensor-ESPRIT-type algorithms are shown to outperform the previ-

ously existing algorithms. The discussion in this thesis extends our the previous publications

[HR04, RH07b, HRD08, RH09b] in a number of aspects. First of all, it presents proofs for

many of the theorems that were stated in the conference papers but not proven due to space

limitations (see Appendices D.5 to D.8). Secondly, we show that NC Unitary ESPRIT and

NC Unitary Tensor-ESPRIT can be applied to arrays that are not centro-symmetric in spite

of the fact that centro-symmetry is required for Unitary ESPRIT. Thirdly, we prove that

the “Standard” versions NC Standard ESPRIT and NC Standard Tensor-ESPRIT are actu-

ally not needed since their performance is identical to NC Unitary ESPRIT and NC Unitary

Tensor-ESPRIT, respectively, while having a higher computational complexity.

A particularly important aspect of this part is Chapter 12 where we provide an analyti-

cal performance assessment of the ESPRIT-type algorithms that have been introduced. Our

framework is based on a first-order perturbation expansion of the Singular Value Decompo-

sition which was introduced in [LLV93]. This expansion models the estimation error of the

signal subspace as an explicit function of the perturbation of the data (i.e., the additive noise),

only assuming that the perturbation is small compared to the desired signal. The main ad-

vantage of this approach is that no assumptions about the statistics of the desired signal or

the perturbation are required. Moreover, it is asymptotic in the effective SNR, i.e., it becomes

exact as either the noise variance vanishes or the number of samples approaches infinity.

This is not the case for many existing analytical performance results for high-resolution

parameter estimation algorithms. The most frequently cited papers [KB86] for the MUSIC

algorithm and [RH89a] for ESPRIT as well as many follow-up papers which extend the orig-

inal results (e.g., [PK89b], [Fri90], [MZ94], [ZKM92], [MHZ96]) are based on a result on the

distribution of the eigenvectors of a sample covariance matrix first published in [Bri75]. How-

ever, the result shown in [Bri75] requires the desired signal as well as the noise to be Gaussian

distributed which is not required by our framework based on [LLV93]. Moreover, [Bri75] is

asymptotic in the number of samples, whereas [LLV93] can be applied even in the single snap-

shot case (provided the noise variance is sufficiently small). Another drawback of [Bri75] is

that the expressions for the covariance matrix of the eigenvectors are rather long and difficult

to simplify, whereas [LLV93] provides intuitive and short expressions.

7



1. Introduction and scope of the thesis

We begin by extending the perturbation expansion for the SVD provided in [LLV93] to

the HOSVD [RBHW09]. Based on this result we then find corresponding expansions for

the Tensor-ESPRIT-type algorithms. Since they are explicit in the perturbation, they do

not require any assumptions about the statistics of the perturbation. This is advantageous

since it allows to incorporate many different preprocessing steps such as Forward-Backward

Averaging (see Appendix D.14) the transformation onto the real-valued domain used in Unitary

ESPRIT [HN95] (see Appendix D.13), the array augmentation of NC ESPRIT-type algorithms

[HR04], spatial smoothing [SWK85], and tensor-based spatial smoothing [THRG10, THG09b,

THG09a]. Note that we do not provide a performance analysis for NC ESPRIT or for spatial

smoothing in this thesis. This is left for future work (see Chapter 13). Note that we also

extend our performance algorithms to ESPRIT-type algorithms based on SLS [RH11]. We

additionally provide closed-form expressions for the mean square error (MSE) in the special

case that the perturbation comprises only of circularly symmetric white noise. For the case of

a single source, we simplify the MSE into compact expressions that depend only on the number

of sensors and the effective signal to noise ratio (SNR). As we show, all Least-Squares (LS)

based ESPRIT-type algorithms yield the same MSE and the asymptotic efficiency decreases

with the number of sensors in the array. On the other hand, we also show that a single iteration

of the Structured Least Squares (SLS) algorithm changes the situation since in this case, the

asymptotic efficiency is very close to one. The discussion in this thesis extends our previous

publications [RBHW09, RBH10, RH11] on this subject in a number of aspects. First of all,

we provide proofs for all the theorems which could not be included in the conference versions

due to space reasons (see Appendices D.12 to D.18). Moreover, we provide the closed-form

expression for the MSE of ESPRIT based on SLS in the special case of a single source.

A summary and an outlook to possible future work related to subspace-based multidimen-

sional parameter estimation is given in Chapter 13. An overview of the various ESPRIT-type

algorithms and the Least Squares algorithms to solve the overdetermined shift invariance equa-

tions is presented in Tables 13.1 and 13.2, respectively. The tables also outline the cases where

a performance analysis exists and where it is still open. Proofs and derivations of Part III are

found in Appendix D.

1.4. Part IV: Two-Way Relaying

Finally, the third application area is bidirectional relay-assisted communications. The main

motivation for considering relaying is that with advanced digital modulation schemes and

MIMO techniques we have almost reached the fundamental limits of point-to-point channels
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predicted a long time ago [Sha48, Tel99]. Multi-User MIMO techniques [SSH04] are already

in the process of being implemented into the current standards. To enhance the system per-

formance further we have to seek innovative ways of accessing the wireless medium. Instead

of decoupling the networks into parallel point-to-point links by orthogonal access (TDMA,

FDMA, SDMA), recent research has taught us that interference can sometimes be used in a

constructive manner [PDF+08, SRH10b, VLV07]. It is therefore foreseen that future networks

will be built from more sophisticated building blocks such as the interference channel [HK81],

the relay-enhanced channel [vdM71, CE79], or the two-way relaying channel [RW05]. How-

ever, the performance limits and the optimal access schemes for these building blocks are still

unknown [DHL+11].
We contribute to a better understanding of one of these building blocks by investigating a

particular example, namely, two-way relaying [RW05, RW07]. Via two-way relaying we can

achieve a bidirectional exchange of information between two network nodes while the nodes

as well as the relay station can operate in half-duplex mode. This is a desirable feature with

regard to the goal to keep the hardware complexity of relay stations as low as possible. For the

same reason, we focus on (digital) amplify and forward relays [PWS+04], which are simpler to

implement than relay stations that decode the source nodes’ messages.

An introduction to relay-assisted communication with a detailed motivation for using two-

way relaying and a state-of-the-art review is provided in Chapter 14. We develop the data

model and show that a two-way relaying system with a MIMO amplify and forward relay can

be converted into two parallel point to point MIMO links if the terminals possess channel

knowledge. To obtain the required channel knowledge, we introduce algebraic channel esti-

mation schemes in Chapter 15 [RH09e, RH09d, RH10c]. As we show, the specific structure of

the compound channel matrices gives rise to a quadratic Least Squares problem, which can

be exploited via the tensor-based channel estimation scheme TENCE. The channel estimation

accuracy can be further improved via a Structured Least Squares (SLS) based iterative refine-

ment step, which requires only one to four iterations, depending on the SNR. As a side result,

we find design rules for the pilot sequences that should be used during the training phase in

order to facilitate the channel estimation procedure.

Based on the acquired channel knowledge we then discuss the design of the relay amplifi-

cation matrix for the MIMO amplify and forward relays in two-way relaying in Chapter 16.

Existing approaches to this task suffer of two major shortcomings: either they rely on very

complicated numerical optimization procedures [ZLCC09, LSPL10] that may be difficult to

implement in practice or they are based on ad-hoc proposals [UK08, VH11] that do not per-

form satisfactory with respect to suitable performance metrics such as the bit error rate or
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the sum-rate. This provides the motivation for finding simple algebraic solutions that are in-

spired by system performance metrics and hence perform not much worse than the complicated

optimal solutions. For the general MIMO case, we develop the Algebraic Norm Maximizing

(ANOMAX) transmit strategy [RH09a], which maximizes the Frobenius norms of the effective

MIMO channels that convey the desired signals. We demonstrate that ANOMAX concentrates

most of the energy on the dominant eigenmodes of these effective channels, yielding a signifi-

cant SNR improvement for single-stream transmission and thus a low bit error rate providing a

reliable transmission link. However, such a low-rank structure is less suitable to spatially mul-

tiplex several data streams as it cannot provide the full spatial multiplexing gain. Therefore,

we present a simple algebraic modification called Rank-Restored ANOMAX [RH10a], which

restores the required rank for high SNRs. We show that a simple heuristic inspired by the

water filling (WF) principle yields a sum-rate very close to the optimum sum-rate. Finally, for

the special case of single-antenna terminals, we introduce the sum-rate optimal semi-algebraic

Rate-Maximization via Generalized Eigenvectors (RAGES) scheme [RH10b]. We verify the

optimality of RAGES by comparing it to the sum-rate optimum found via the Polynomial

Time DC (POTDC) algorithm [KVRH12, KRVH12]. POTDC solves the non-convex sum-rate

maximization problem by a sequence of semi-definite programming problems obtained by lo-

cally linearizing the non-convex parts in the cost function. All proposed schemes are evaluate

it in numerical simulations and compared to the state-of-the-art schemes. The discussion in

this part of the thesis extends previous conference publications in some aspects. Firstly, the

discussion of the ANOMAX scheme is significantly extended (see Section 16.3.3). We prove in

Appendix E.7 that it gives a rank-one solution if the weighting coefficient is set to zero or to one

and in Appendix E.6 that it coincides with the Dual Channel Matching (DCM) strategy from

[VH11] for the special case of single-antenna terminals. We also introduce a low-complexity

version of RAGES for the special case of white noise at the relay, see Appendix E.9.

Chapter 17 provides a summary and outlines possible future research directions connected

to two-way relaying. Proofs and derivations of Part IV are found in Appendix E.

The final Chapters 18 and 19 collect all the contributions from the thesis again and sum-

marize the future research directions related to all four parts of the thesis. There are five

appendices to the thesis. Appendix A summarizes the list of acronyms and the mathematical

notation used throughout the thesis. Appendices B, C, D, and E contain details, proofs, and

derivations of Part I, II, III, and IV, respectively. Note that the bibliography is split into two

parts: one part with the own references and a second part with all other references.
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The first part of the thesis is devoted to the mathematical fundamentals that are used to

derive efficient algebraic solutions for the application areas discussed in the subsequent three

parts (tensor decompositions, subspace-based multi-dimensional parameter estimation, and

two-way relaying) of the thesis. The main goal is to align the existing results which appear

scattered over many books and papers in a systematic manner. We aim at presenting a

compact collection that can directly be used by engineers without having to untangle the very

formal language used in mathematical textbooks [Rud76, Mun00, DF03]. There have been

previous attempts to creating such collections, e.g., the “matrix cookboox” [PP08]. However,

despite being frequently cited, it is not maintained by the authors anymore. Moreover, it is

lacking certain concepts that are becoming increasingly important, for instance, the treatment

of multilinear (tensor) algebra for which a compact “cookbook”-style compendium is still

missing.

We provide a motivation and an overview in Chapter 2. The subsequent Chapter 3 is then

devoted to matrix-based algebraic concepts. In particular, we focus on linear and quadratic

forms and discuss how an expression containing linear or quadratic expression can be refor-

mulated in a “canonical” manner. The main advantage of these “canonical” expressions is

that they often allow to apply well-known solutions, e.g., a Least-Squares optimal solution for

unknown parameters in a linear form (via the method of Least Squares) or the maximization

or minimization of a quadratic form (via eigenvectors). As an example, the Least-Squares op-

timal factorization of a Kronecker product and a column-wise Kronecker (Khatri-Rao) product

is shown and its applications are outlined.

In the subsequent Chapter 4, we discuss multilinear (tensor) algebraic concepts. For sig-

nals that are inherently R-dimensional for R > 2 (e.g., measured over spatial dimensions,

frequency, and time), R-way arrays provide a representation of the sampled signal in its native

multidimensional form. Such a representation enables us to exploit the rich multidimensional

structure, often resulting in a benefit (e.g., improved estimation accuracy). The necessary

algebraic concepts to manipulate R-D signals are summarized in Chapter 4, providing many

useful properties that are used in the later parts of the thesis.

The final Chapter 5 of this part of the thesis provides a summary and links the results to

the later parts of the thesis. Proofs and derivations for this part are found in Appendix B.



2. Motivation and Overview

In this first part of the thesis we review the necessary fundamentals which are used for de-

riving efficient algebraic solutions to various problems discussed in the subsequent three parts

(tensor decompositions, subspace-based multi-dimensional parameter estimation, and two-way

relaying) of the thesis. We present a set of generic tools that can be applied to reformulate a

given problem into a simpler “canonical” form, for which solutions may already exist.

Such results exist in the literature, however, they are spread over many books and papers.

Moreover, they are sometimes not easily accessible to the engineer due to the very formal

language used by mathematicians [Rud76, Mun00, DF03]. Hence, the main motivation for

this part is to present these concepts in a compact and systematic form, from which they

follow naturally. There have been attempts for creating comprehensive compendia before,

a prominent example is given by the “matrix cookbook” [PP08]. However, despite being

frequently cited1, the matrix cookbook is no longer maintained. Moreover, it does not contain

certain concepts we need in this thesis, for instance the vectorization and the LS-optimal

factorization of Kronecker and Khatri-Rao products (Section 3.1.2) or concepts of multilinear

(tensor) algebra. More examples for well-cited compendia include [MN95] with special focus

on matrix differential calculus, [Bre78, Van00] discussing Kronecker products, or [GvL80] with

a focus on matrix decompositions. Another shortcoming of these existing references is that

none of them presents results on multi-linear algebra, which has become a very important tool

in digital signal processing during the last decade. In light of this, a “tensor extension” of the

matrix cookbook would be very desirable. This is an additional goal of this part of the thesis.

We start with linear forms and quadratic forms in Chapter 3 which appear very frequently

in various fields of signal processing. The main reason for this is that they often have a direct

physical interpretation. For instance, linear forms appear when performing transformations

into another basis (such as projections), which are very common in digital filter design [OS99]

or array signal processing [Van02]. In this thesis, the reformulation of linear forms is extensively

used in Part III for the first-order perturbation expansions of the estimation errors of the signal

subspace and subspace-based parameter estimation schemes which are formulated in terms of

linear expressions. We also apply it in Part IV for rewriting the transmission equations in

a two-way relaying system with amplify and forward relays, e.g., in the derivation of the

Algebraic Norm Maximizing (ANOMAX) transmit strategy (cf. Section 16.3). Moreover,

1In July 2012, Google Scholar had recorded 289 citations for the matrix cookbook.
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quadratic forms occur when we compute powers, such as the transmit power or the interference

power. We use these results in Part IV, e.g., to show that the sum-rate in the special case

of single-antenna terminals can be expressed as a product of two ratios of quadratic forms

(cf. Section 16.1.3). Note that even if the given functions are more complicated, we can often

approximate them by their Taylor series which, up to order two, consists of a constant, a

linear, and a quadratic term. These are, however, not always in their canonical form which is

why it is of crucial importance to have the ability to reformulate such expressions.

As an extension, we also discuss ratios of quadratic forms, which are very strongly linked

to eigenvectors and often permit closed-form solutions in terms of the eigenvectors of a spe-

cific matrix [Str93]. This link is used in Part IV of the thesis to derive the semi-algebraic

RAGES (Rate-Maximization via Generalized Eigenvectors for Single Antenna Terminals) strat-

egy (cf. 16.4).

Another important concept we discuss is the vectorization of Kronecker products and column-

wise Kronecker (Khatri-Rao) products [LP93], which follow naturally as special cases of linear

forms. We show how this vectorization can be used to find (Least-Squares optimal) approxi-

mate factorizations of a given matrix into a Kronecker product [Van00] or a Khatri-Rao product

of two matrices. This is the key element to the R-D extension (R > 3) of the SECSI framework

for efficient CP decomposition discussed in Part II of the thesis. It is also one of the two key

elements of the Tensor-Based Channel Estimation (TENCE) algorithm for channel estimation

in two-way relaying which is shown in Part IV, Chapter 15.

In the next Chapter 4, we shift our attention to multi-linear forms, for which multi-linear

(tensor) calculus is needed. The formulation of these forms in terms of unfoldings and n-

mode products [dLdMV00b] provides the necessary basis for manipulating multi-dimensional

signals in their native, multi-dimensional form. By explicitly exploiting the multi-linear struc-

ture inherent in the data, we can tailor signal processing algorithms more specifically to this

structure and hence obtain an improvement, for instance, in suppressing the additive noise

more efficiently [KB09]. As in the matrix case, this often requires tools to reformulate a given

multi-linear form. Moreover, since for R-dimensional signals, the elements are referenced by

a set of R indices, we often need to permute the elements of multi-linear forms to make them

“compatible” with each other. To this end we introduce a set of permutation matrices which

allows the necessary manipulations and discuss their properties. Tensor calculus is used for the

tensor-based algebraic manipulations in the entire Part II and III, and even parts of Part IV

(Chapter 15). Finally, the Higher-Order SVD (HOSVD) and the Canonical Polyadic (CP) de-

composition introduced in Section 4.2 form the basis for Part II of this thesis where their link

is exploited to derive an efficient algorithm to compute the CP decomposition. The HOSVD
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is also the basis for the tensor-based subspace estimation scheme (cf. Section 10.2) used for

Tensor-ESPRIT-type parameter estimation algorithms discussed in Part III. Moreover, the CP

decomposition is employed in Part IV to facilitate the design of the relaying strategy during

the training phase needed for TENCE (cf. Chapter 15).

Finally, Chapter 5 contains a summary of this first part which provides the links to the sub-

sequent parts of the thesis as well as some bibliographical notes and further reading. Moreover,

Appendix B contains proofs and derivations for this part.

It should be pointed out that many of the concepts we discuss in this part of the thesis

are already known and have been frequently applied. However, we put emphasis on providing

a systematic and compact collection of these concepts under a unified framework, as this

provides the reader with a reference where also lesser-known tools (e.g., the Least-Squares

optimal factorization of Khatri-Rao and Kronecker products used in Part II and Part IV of

this thesis or the consistent permutation of tensor unfoldings used in Part III and Part IV of

this thesis) are easy to find.
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3. Matrix-based algebraic concepts

3. Matrix-based algebraic concepts

3.1. Linear forms and quadratic forms

3.1.1. Linear forms

A linear form L is defined as a mapping from a vector space V to its field of scalars F which

is linear, i.e., it satisfies the law of superposition L(x1 + x2) = L(x1) +L(x2) ∀x1,x2 ∈ V and

it is homogeneous L(α ⋅ x) = α ⋅ L(x) ∀x ∈ V, α ∈ F. Throughout this thesis, the vector space

we consider is V = CN over the field F = C. In this case, any linear form in a vector x ∈ CN

can be expressed as a linear combination of the elements of x with some coefficients, say, αn,

n = 1,2, . . . ,N , i.e.,

y =
N∑
n=1

αn ⋅ xn = aT ⋅x. (3.1)

We often encounter vectors or matrices where each element is a linear form. A column vector

of linear forms can easily be expressed as

y =A ⋅x (3.2)

where A ∈ CM×N contains the coefficients for the M linear forms in x that are contained in

the vector y ∈ CM . In other words, the m-th component of y, which we denote as ym is given

by ym = aTm ⋅x, where aTm is the m-th row of A. We refer to the vector of linear forms in (3.2)

as the “canonical” way of expressing a linear form.

An example where we encounter (3.2) in practice is the separation of linear mixtures. Let

us assume that the vector x contains parameters of interest and we perform an experiment

where we observe a vector y which follows (3.2). In this case, (3.2) represents a set of M

linear equations in N unknowns and hence many efficient algorithms for solving it for x are

available. Even in the case where no exact solution in x exists since the observed y is not

entirely contained in the column space of A (e.g., due to additive noise or imprecise knowledge

of A), efficient algorithms for finding an approximate solution in x exist, e.g., the method of

Least Squares (LS) or the Total Least Squares (TLS) algorithm [GvL80]. Therefore, we show

in the sequel how different kinds of linear forms can be reformulated into this “canonical”

linear form.
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3.1. Linear forms and quadratic forms

For instance, we may encounter a matrix of linear forms, i.e., a matrix Y ∈ CM×K , where

each element is a linear form. In the most general case, the (m,k)-element of Y which we

denote as [Y ](m,k) can be expressed as

[Y ](m,k) =
N∑
n=1

am,k,n ⋅ xn (3.3)

where am,k,n represent the corresponding coefficients. It is possible to express this matrix

of linear forms directly via a three-mode product between a tensor of coefficients A and the

vector x (which will be covered in Section 4.1). Alternatively, we may reexpress (3.3) into the

canonical form (3.2) by applying the vec-operator. This vectorization stacks all columns of a

matrix on top of each other to yield a column vector containing all the elements of the matrix.

Formally, it is defined as

vec{[x1 x2 . . . xN]} =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ CM ⋅N×1, (3.4)

where xn ∈ CM×1 are arbitrary vectors for n = 1,2, . . . ,N . Therefore, we can write (3.3) as

vec{Y } = Ā ⋅x, (3.5)

where vec{Y } ∈ CM ⋅K and Ā ∈ CM ⋅K×N .

There is an important special case whereA is in fact more structured. Consider the following

“matrix product” linear form

Y =B ⋅X ⋅C, (3.6)

where Y ∈ CM×K , B ∈ CM×N1 , X ∈ CN1×N2 , and C ∈ CN2×K . The matrix Y is also a matrix of

linear forms but it is less general than (3.3) as there are onlyM ⋅N1+K ⋅N2 coefficients forN1 ⋅N2

variables (compared to M ⋅K ⋅N coefficients for N variables in (3.3)). To reformulate (3.6)

into the “canonical” vector linear form shown in (3.3), we can apply the vec-operator to (3.6).

Since the resulting vector is a linear form in vec{X} we know there must exist a matrix A

such that vec{Y } = A ⋅ vec{X}. In fact it is easy to see that A must contain all pair-wise

products between the elements of B and C. More precisely, we have A = CT ⊗B, where

⊗ denotes the Kronecker-product (defined in Appendix A.2). The corresponding rule can be
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3. Matrix-based algebraic concepts

written as

vec{B ⋅X ⋅C} = (CT ⊗B) ⋅ vec{X} (3.7)

and dates back to [Neu69]. It became more popular in the signal processing community

via [Bre78] which lists lots of properties and applications of the Kronecker product and gives

links to the corresponding proofs for them. A selection of properties is discussed in Sec-

tion 3.1.2. The advantage of (3.7) is that we can directly solve it for vec{X}. A drawback

compared to the matrix version (3.6) is that the vectorized form does not capture the structure

of the model since the information that X and Y are organized in rows and columns is lost.

Yet another popular method of expressing linear forms is given by expressions of the form

trace{A ⋅X} for A ∈ CM×N and X ∈ CN×M , which is a scalar linear form in the elements of

X. Therefore, we must be able to write it as a linear combination of the elements of vec{X}.
This is possible via the following identity

trace{A ⋅X} = trace{X ⋅A} = vec{AT}T ⋅ vec{X} , (3.8)

which is also proven in [Neu69].

3.1.2. Kronecker, Khatri-Rao, and Schur products

The Kronecker product, the column-wise Kronecker (Khatri-Rao) product [KR68], and the

element-wise (Schur) product between two matrices are denoted as A⊗B, A◇B, and A⊙B,

respectively. These three products are related to each other, since the elements contained in

A ⊙B are a subset of the elements contained in A ◇B which are a subset of the elements

contained in A ⊗ B. Therefore, we can compute the Khatri-Rao and the Schur product

from the Kronecker product by performing appropriate selections. Formally speaking, this is

accomplished via the “reduction matrix” Ξn of size n2 × n which defined as

Ξn = In ◇ In (3.9)

For example, for n = 4, the reduction matrix Ξ4 has the following form

Ξ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(3.10)
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3.1. Linear forms and quadratic forms

These reduction matrices establish the link between Kronecker, Khatri-Rao, and Schur product

given by

A ◇B = (A⊗B) ⋅ΞN (3.11)

A⊙C = ΞT
M ⋅ (A⊗C) ⋅ΞN (3.12)

where A ∈ CM×N , B ∈ CP×N , C ∈ CM×N . Note that Ξn can also be used to extract the

diagonal elements of a matrix from its vectorized version since for X ∈ CN×N we have

ΞT
N ⋅ vec{X} = diag {X} , (3.13)

where diag {X} returns a column vector containing the main diagonal elements of X.

There are many useful algebraic properties involving these three products, e.g., in [Bre78] or

in [PP08]. A few of the properties we need later on are summarized in the following identities

(A⊗B)H =AH ⊗BH (3.14)

(A⊗B)+ =A+ ⊗B+ (3.15)

∥A⊗B∥F = ∥A∥F ⋅ ∥B∥F (3.16)

(A⊗B) ⋅ (C ⊗D) = (A ⋅C)⊗ (B ⋅D) (3.17)

(A⊗B) ⋅ (C ◇E) = (A ⋅C) ◇ (B ⋅E) (3.18)

(C ◇E)H ⋅ (C ◇E) = (CH ⋅C)⊙ (EH ⋅E) (3.19)

(C ◇E) ⋅ diag {f} = ((C ⋅ diag {f}) ◇E) = (C ◇ (E ⋅ diag {f})) (3.20)

diag {g} ⋅E ⋅ diag {f} = E ⊙ (g ⋅ fT) , (3.21)

where A ∈ CM×N , B ∈ CP×Q, C ∈ CN×R, D ∈ CQ×S , E ∈ CQ×R, f ∈ CR×1, and g ∈ CQ×1.

Moreover, + denotes the Moore-Penrose pseudo-inverse [Moo20, Pen55] (cf. its definition in

Appendix A.2), and ∥⋅∥F the Frobenius norm1. Note that (3.19) follows by combining (3.12)

and (3.18). Via (3.19), the pseudo-inverse of a Khatri-Rao product can be computed in the

following manner

(C ◇E)+ = [(CH ⋅C)⊙ (EH ⋅E)]−1 ⋅ (C ◇E)H , (3.22)

if (CH ⋅C)⊙ (EH ⋅E) is full rank (which implies N ⋅Q ≥ R).

1In fact, (3.16) is true for a wider class of norms, including the spectral norm, the 1-norm, or the infinity-norm.
However, we only need the Frobenius norm (and the special case of the Euclidean norm for vectors) here.
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3. Matrix-based algebraic concepts

Another important observation is that A⊗X and X⊗A are matrices of linear forms in the

elements of X and hence, it must be possible to reformulate them into the canonical vector

linear form. This is accomplished via the following proposition.

Proposition 3.1.1. The vectorization of a Kronecker product in terms of one of its arguments

is accomplished via the following identities

vec{A⊗X} =
⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IQ ⊗ a1
IQ ⊗ a2
⋮

IQ ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ IP

⎞⎟⎟⎟⎟⎟⎠
⋅ vec{X} (3.23)

vec{X ⊗A} =
⎛⎜⎜⎜⎜⎜⎝
IQ ⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IP ⊗ a1
IP ⊗ a2
⋮

IP ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
⋅ vec{X} (3.24)

where A ∈ CM×N and X ∈ CP×Q.

Proof: cf. Appendix B.1.

Note that these identities have interesting special cases when A or X are column vectors

(i.e., N = 1 or Q = 1). In this case, the general expressions simplify to

vec{A⊗x} = (vec{A}⊗ IP ) ⋅x (3.25)

vec{x⊗A} =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IP ⊗ a1
IP ⊗ a2
⋮

IP ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅x (3.26)

vec{a⊗X} = (IQ ⊗ a⊗ IP ) ⋅ vec{X} (3.27)

vec{X ⊗ a} = (IP ⋅Q ⊗ a) ⋅ vec{X} (3.28)

vec{a⊗x} = a⊗x = (a⊗ IP ) ⋅x (3.29)

vec{x⊗ a} = x⊗ a = (IP ⊗ a) ⋅x (3.30)

So far, we have shown how to reformulate a Kronecker product linear form in terms of a

canonical vector linear form. However, for the Khatri-Rao product and the Schur product, we

can argue in a similar manner: A ◇X, X ◇A, and A⊙X =X ⊙A are linear forms in X as

well. Their vectorization is achieved via the following proposition.
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Proposition 3.1.2. The vectorization of a Khatri-Rao product and a Schur product in terms

of one of its arguments is accomplished via the following identities

vec{A ◇X} = ([IN ◇A]⊗ IP ) ⋅ vec{X} (3.31)

vec{X ◇A} = [IP ⋅N ◇ (A ⋅ [IN ⊗ 1TP×1])] ⋅ vec{X} (3.32)

vec{B ⊙X} = vec{X ⊙B} = diag {vec{B}} ⋅ vec{X} , (3.33)

where A ∈ CM×N , X ∈ CP×N , B ∈ CP×N , and 1p×q represents a p × q matrix filled with ones.

Moreover, diag {x} yields a square diagonal matrix with the elements of x on its main diagonal.

Proof: Appendix B.2.

Finally, it is sometimes required to permute the order of the matrices in a Kronecker product,

i.e., transformA⊗B intoB⊗A. This can be achieved via a special set of permutation matrices,

which were introduced under the name “commutation matrices” in [MN95]. The commutation

matrix KM,N of size M ⋅N ×M ⋅N is the unique permutation matrix which satisfies

KM,N ⋅ vec{X} = vec{XT} (3.34)

for arbitrary matrices X ∈ C
M×N . In Appendix B.3 it is shown how these commutation

matrices can be directly computed from a “permuted column” Kronecker product of two

identity matrices. A direct consequence of this identity is that the commutation matrices can

be used to permute Kronecker products. In fact, we have [MN79]

KT
M,N ⋅ (A⊗B) ⋅KP,Q =B ⊗A (3.35)

for A ∈ CM×P and B ∈ CN×Q.

As shown in [MN95] with the help of the commutation matrices, the following alternative

expressions for the vectorization of Kronecker products introduced in Proposition 3.1.1 can be

derived

vec{A⊗B} = (IN ⊗ ((KQ,M ⊗ IP ) ⋅ (IM ⊗ vec{B}))) ⋅ vec{A} (3.36)

= (((IN ⊗KQ,M) ⋅ (vec{A}⊗ IQ))⊗ IP ) ⋅ vec{B} . (3.37)

However, the form shown in Proposition 3.1.1 is better suited for our derivations since it does

not involve the commutation matrices and is hence easier to simplify.
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3.1.3. Quadratic forms

While for linear forms, only linear combinations of the parameters are allowed, for quadratic

forms we can have quadratic and bilinear terms as well. Formally, a quadratic form is defined

as a homogeneous polynomial of degree two in N variables [Sch85]. Similar to a linear form,

we can see quadratic forms as mappings from x ∈ CN to C. Moreover, any homogeneous

polynomial in N variables can be expressed via

q(x) = xH ⋅R ⋅x (3.38)

where R ∈ CN×N . We refer to (3.38) as the “canonical” expression for quadratic forms (in line

with the “canonical” linear vector forms from (3.3)). In general, q(x) is a complex number.

However, if R is a Hermitian symmetric matrix, i.e., RH = R is is easy to see that q(x)∗ =
q(x)H = q(x) and hence q(x) ∈ R. Moreover, if R is a positive (negative) semi-definite matrix,

we have q(x) ≥ 0,∀x (q(x) ≤ 0,∀x), with strict inequality for positive (negative) definite

matrices [Str93]. Note that the class of positive (semi-)definite quadratic forms plays a major

role in many signal processing related applications. This is due to the fact that mean squared

quantities (such as errors or powers) can very often be expressed via such a quadratic form.

As for linear forms, we often encounter quadratic forms in a “non-canonical” expression. In

this case it is always useful if we are able to reformulate it in terms of a canonical quadratic

form. The following proposition (which cannot be found in [PP08]) provides a rather generic

expression for quadratic forms from which many other expressions follow as special cases. We

use it in Part IV to show that the sum-rate in a two-way relaying system with MIMO Amplify

and Forward (AF) relays and single-antenna terminals can be expressed as the product of two

Rayleigh quotients. Based on this observation, the semi-algebraic RAGES scheme for sum-rate

maximization is derived in Section 16.4.

Proposition 3.1.3. The expression trace{A ⋅X ⋅B ⋅XH ⋅C} is a quadratic form in the el-

ements of X ∈ CM×N . It can be reformulated in terms of a canonical quadratic form in the

following manner

trace{A ⋅X ⋅B ⋅XH ⋅CH} = vec{X}H ⋅ (BT ⊗ (CH ⋅A)) ⋅ vec{X} , (3.39)

where B ∈ CN×N and A,C ∈ CP×M .

Proof: cf. Appendix B.4.
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Note that, as a corollary, the following useful identities follow

trace{E ⋅XH ⋅D ⋅X ⋅FH} = vec{X}H ⋅ ((ET ⋅F ∗)⊗D) ⋅ vec{X} (3.40)

aH ⋅X ⋅B ⋅XH ⋅ a = vec{X}H ⋅ (BT ⊗ (a ⋅ aH)) ⋅ vec{X} (3.41)

trace{X ⋅B ⋅XH} = vec{X}H ⋅ (BT ⊗ IM) ⋅ vec{X} (3.42)

trace{B ⋅x ⋅xH} = xH ⋅B ⋅x, (3.43)

where D ∈ CM×M , E,F ∈ CP×N , a ∈ CM×1, and x ∈ CN×1.

3.2. Eigenvalues and singular values

In the previous section we have seen how quadratic forms can be reformulated algebraically

into their “canonical” form xH ⋅R ⋅x. In this section we provide the algebraic link between this

form and eigenvectors of square matrices. Note that this is often the key to finding algebraic

solutions to given problems, as the later parts of this thesis exemplify.

For every square diagonalizable2 matrix R ∈ CN×N , there exists a set of N linearly inde-

pendent vectors qn, such that R ⋅ qn = λn ⋅ qn for n = 1,2, . . . ,N . The vectors qn are the

eigenvectors and the scalars λn the corresponding eigenvalues of R. Eigenvectors are unique

only up to a scaling with an arbitrary complex number3: if qn is an eigenvector then α ⋅ qn is

also an eigenvector for any α ∈ C≠0.

There is a strong link between quadratic forms and eigenvalues, which is established by the

following theorem:

Theorem 3.2.1. [Str93] Consider the following ratio of quadratic forms

r(x) = xH ⋅R ⋅x
xH ⋅x (3.44)

for a Hermitian matrix R ∈ CN×N . Then we have λmin(R) ≤ r(x) ≤ λmax(R) with equality for

x = qmin and x = qmax, respectively. Here, λmin(R) and λmax(R) denote the largest and the

smallest eigenvalue of R, and the corresponding eigenvectors are qmin and qmax.

The ratio in (3.44) is also called Rayleigh quotient or Rayleigh-Ritz ratio. A proof for this

theorem is found in many standard algebra textbooks, for instance, [Str93]. In other words

2A matrix is diagonalizable if for each of its eigenvalues the algebraic and the geometric multiplicity agrees
[GvL80]. A counter-example is a matrix filled with zeros and a single off-diagonal non-zero entry.

3For eigenvectors associated to eigenvalues with multiplicity larger than one, ambiguity is even weaker: any
basis for the null space of R − λn ⋅ I can be chosen.
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the theorem implies that the unconstrained maximization or minimization of such ratios has

an algebraic solution given by one of the eigenvectors of the matrix R. In fact, any local

extremum of r(x) is also an eigenvector of R.

A related optimization problem is the maximization or minimization of the quadratic form

xH ⋅R ⋅ x subject to the constraint ∥x∥22 = xH ⋅ x = 1. In fact, it can easily be shown via the

method of Lagrange multipliers that all local extrema of this constrained optimization problem

are eigenvectors of R scaled to unit norm.

A natural extension of the Rayleigh quotient is to consider the ratio of two quadratic forms,

i.e.,

r̄(x) = xH ⋅Q1 ⋅x
xH ⋅Q2 ⋅x (3.45)

for Hermitian matricesQ1,Q2 ∈ C
N×N . The ratio in (3.45) is also referred to as the generalized

Rayleigh quotient [Str93] since (3.44) is a special case of (3.45) for Q2 = IN . Likewise, its

extremal values are referred to as the generalized eigenvalues of the matrix pair (Q1,Q2)
and the vectors yielding these extrema are called generalized eigenvectors. In the special case

where Q2 is invertible, the generalized Rayleigh quotient is equal to the Rayleigh quotient

of the matrix R = Q−12 ⋅Q1. Therefore, the maxima and minima are readily found from the

eigenvectors of Q−12 ⋅Q1. However, if Q2 is not invertible, the denominator can become zero

and hence r̄(x) can become infinitely large. In this case a maximum does not exist, even

though we can formally assign generalized eigenvectors to these infinitely large generalized

eigenvalues. Note that the finite generalized eigenvalues can be computed as the roots of the

determinant of the matrix Q1 + λQ2. Matrices of this form are also referred to as “matrix

pencils” [HS91, Zol88, OWS88].

3.3. Matrix factorization

Another powerful concept in matrix algebra is finding a factorization of a given matrix into

factors with specific properties. In general, such a factorization is not unique. For example,

consider a square matrix X ∈ CM×M which we want to factorize into two factors A and B,

such thatX =A ⋅B. Without additional constraints, A can be chosen as an arbitrary full rank

matrix if we set B =A−1 ⋅X. The situation improves if the given matrix is known to possess a

low rank. To this end, consider a matrix X ∈ CM×N with rank{X} = r < min{M,N}. Then,

we can decompose X into A ⋅B for A ∈ CM×r and B ∈ Cr×N . This decomposition is unique
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3.3. Matrix factorization

up to an r × r full rank matrix T , since

X =A ⋅B =A ⋅ T±̄
A

⋅T −1 ⋅B´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
B̄

= Ā ⋅ B̄ ∀T ∈ Cr×r. (3.46)

In order to reduce the ambiguities further, we can specify additional constraints for the factors

A and B. Examples include [GvL96]:

• A should be upper triangular, B lower triangular with ones on its main diagonal. This

results in an L-U-factorization.

• A should be unitary, B upper triangular. This results in a Q-R-factorization.

• For Hermitian positive semi-definite matrices X: A should be lower triangular with

non-negative diagonal entries and B =AH. This results in a Cholesky factorization.

Each of this decompositions is essentially unique meaning that a unique factorization is pro-

vided up to some remaining indeterminacies which are considered to be irrelevant. These relate

to the set of all matrices T which, given a valid decompositionA⋅B, yield new factors Ā =A⋅T
and B̄ = T −1 ⋅B which still satisfy all the constraints that were set to find A and B. The fact

that matrix decompositions are not unique unless additional constraints are introduced is one

of their major drawbacks if we want to apply them to separate a given signal into individual

components, because such constraints may lack practical meaning. As we show in Section 4.2

this drawback is alleviated if we consider more than two dimensions and define trilinear (3-D)

or in general multilinear (R-D) decompositions. For instance, the Canonical Polyadic (CP)

decomposition is essentially unique without additional constraints on its factor matrices.

Another very important decomposition is given by the eigenvalue decomposition (EVD),

which is applicable to arbitrary square diagonalizable matrices R (defined in Section 3.2) and

can be expressed as

R =Q ⋅Λ ⋅Q−1, (3.47)

where Q ∈ CN×N contains the N eigenvectors of R in its columns and Λ = diag {[λ1, . . . , λN ]} ∈
C
N×N is a diagonal matrix of eigenvalues. If all eigenvalues are distinct, this decomposition

is unique up to permutation of the columns of Q (and the corresponding elements on the

diagonal of Λ) and scaling of the columns of Q with arbitrary non-zero complex coefficients.

The latter ambiguity can be reduced to scaling by arbitrary phase terms if all eigenvectors are

normalized to norm one. Note that for Hermitian matrices R, the eigenvectors are mutually

orthogonal and hence Q−1 can be replaced by QH if the eigenvectors are scaled to norm one.
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For non-square matrices X ∈ CM×N , rank{X} = r, a generalization of this concept is given

by the singular value decomposition (SVD) (see [Ste93] for historical notes) which can be

written into

X = U ⋅Σ ⋅V H, (3.48)

where U ∈ CM×M and V ∈ CN×N are square unitary matrices and Σ ∈ RM×N contains the r

non-zero singular values [σ1, σ2, . . . , σr] on its main diagonal and zeros elsewhere. The singular

values are ordered by magnitude, i.e., σ1 ≥ σ2 . . . ≥ σr, which provide a unique ordering as long

as they are distinct. In this case, the SVD is unique up to one phase term eϕn per column of

U since the opposite phase term e−ϕn can be multiplied to the corresponding column of V

without changing the result. Since only the first r rows and columns of Σ are non-zero, (3.48)

can alternatively be expressed in more compact (“economy-size”) form as

X = U s ⋅Σs ⋅V H
s , (3.49)

where U s and V s contain the first r columns of U and V , respectively, and Σs is given be the

upper-left (r × r) block of Σ. Finally, note that truncating an SVD to r′ < rank{X} columns

in U and V yields the optimum low-rank approximation of X in the Frobenius norm sense,

i.e., the matrix X̂ which minimizes

argmin
X̂ ∣ rank{X̂}=r′

∥X − X̂∥
F
, (3.50)

shown by the Eckart-Young theorem [EY36]. This fundamental result forms the basis for

subspace-based parameter estimation schemes, which are discussed in Part III of this thesis.

For Hermitian symmetric matrices X = XH ∈ CM×M , the EVD and the SVD are highly

related. It can be shown that such matrices possess a set of M mutually orthogonal eigenvec-

tors. Hence, if these eigenvectors are scaled to unit norm, the eigenvector matrix Q becomes

unitary and we have an EVD of the form X = Q ⋅ Λ ⋅QH. Moreover, the eigenvalues λi of

any Hermitian matrix are real-valued. Therefore, if the eigenvalues are distinct and we order

them according to their magnitude in descending order, we have the following: (a) for positive

definite matrices X the EVD and the SVD are linked4 as U = Q = V , σi = λi; (b) for nega-

tive definite matrices X we have U = Q = −V , σi = −λi; (c) for indefinite matrices we have

σi = ∣λi∣ and U and Q agree except for permutation of the columns. For non-square matrices

4The matrices of eigenvectors and singular vectors are equal up to the scaling ambiguities of one phase term
per column of U and Q.
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3.4. Least-Squares Khatri-Rao and Kronecker factorization

X ∈ CM×N we can relate its SVD to the EVD of its Gram matrices. Particularly, if the SVD

of X is given by X = U ⋅Σ ⋅V H then the EVD of the Gram matrix of its rows (X ⋅XH) and

the Gram matrix of its columns (XH ⋅X) can be written as

X ⋅XH = U ⋅Σ2 ⋅UH and XH ⋅X = V ⋅Σ2 ⋅V H. (3.51)

3.4. Least-Squares Khatri-Rao and Kronecker factorization

As we have argued in the beginning of this chapter, it is quite common in signal processing

applications to encounter observations that follow a linear model from which we would like to

infer about the parameters of the experiment. This task is straightforward if there is no noise

in the system: If we observe

y0 =A ⋅x (3.52)

and A ∈ CM×N has full column rank, then A+ ⋅ y0 provides an exact solution for x, where +

denotes the Moore-Penrose pseudo inverse. However, we usually have noisy observations so

that

y = y0 +n (3.53)

and hence y may not be fully in the column space of A. In this case, xLS = A+ ⋅ y provides

the Least Squares (LS) solution which minimizes the error (Euclidean norm) between y and

A ⋅x [Str93].

As we have seen previously, even for linear models, our parameters may be “hidden” more

deeply, e.g., in a matrix product (which can be vectorized via (3.7)) or in a Khatri-Rao or

Kronecker product. We may encounter situations where our observations are an estimate of

a Khatri-Rao product or a Kronecker product which we would like to factorize (e.g., for the

R-D extension of SECSI discussed in Chapter 7 or in the TENCE algorithm shown in Chap-

ter 15). This is the motivation behind considering Least-Squares Khatri-Rao and Kronecker

factorizations.

We can distinguish two different cases: one factor being unknown or both factors being

unknown. In the first case, where one factor is unknown our task is the following:

givenB ≈A ◇X, findX which minimizes ∥B −A ◇X∥2F , or
givenD ≈ C ⊗Y , find Y which minimizes ∥D −C ⊗Y ∥2F ,
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3. Matrix-based algebraic concepts

respectively. Here, the dimensions of the matrices are A ∈ CM×N , X ∈ CP×N , C ∈ CM×N and

Y ∈ CP×Q. However, since A ◇X and C ⊗ Y are matrices of linear forms in the elements

of X and Y , respectively, this is a LS-optimal linear fitting task. Therefore, we can apply

Proposition 3.1.2 and Proposition 3.1.1 to reformulate the Kronecker and Khatri-Rao product

into the canonical vector linear forms via the vec-operator and then apply the LS solution

discussed above. Consequently, we directly obtain the LS-optimal solutions XLS and Y LS as

vec{XLS} = ([IN ◇A]⊗ IP )+ ⋅ vec{B} (3.54)

vec{Y LS} =
⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IQ ⊗ c1
IQ ⊗ c2
⋮

IQ ⊗ cN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⊗ IP
⎞⎟⎟⎟⎟⎟⎟⎠
⋅ vec{D} (3.55)

Note that since we have always more observations than unknowns (M ⋅N ⋅ P observations in

B for N ⋅P unknowns in X for the Khatri-Rao factorization and M ⋅N ⋅P ⋅Q observations in

D for the N ⋅Q unknowns in Y ), these LS solutions are almost surely unique. For (3.54) it

is sufficient that none of the column vectors of A is equal to the zero vector, whereas (3.55)

only requires that the matrix C is not equal to the zero matrix.

The factorization of the permuted quantities B ≈X◇A andD ≈ Y ⊗C proceeds in a similar

fashion. Via the corresponding expressions for the vectorized versions from in Proposition 3.1.2

and Proposition 3.1.1 we find the solutions

vec{XLS} = [IP ⋅N ◇ (A ⋅ [IN ⊗ 1TP×1])]+ ⋅ vec{B} (3.56)

vec{Y LS} =
⎛⎜⎜⎜⎜⎜⎜⎝
IQ ⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IP ⊗ c1
IP ⊗ c2
⋮

IP ⊗ cN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+⎞⎟⎟⎟⎟⎟⎟⎠
⋅ vec{D} (3.57)

In Appendix B.6 we show that (3.54)-(3.57) can be further simplified and relate the resulting

expressions to the more complicated ones provided in [LP93].

We now turn to the second case where both factors are unknown. In this case our task

is formulated as:

givenA ≈W ◇X findX,W which minimizes ∥A −W ◇X∥2F , or
givenB ≈ Y ⊗Z, find Y ,Z which minimizes ∥B −Y ⊗Z∥2F ,
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3.4. Least-Squares Khatri-Rao and Kronecker factorization

where the dimensions of the matrices are W ∈ CM×P , X ∈ CN×P , Y ∈ CM×N , Z ∈ CP×Q.

The Kronecker factorization was first shown in [LP93] where it referred to as the “nearest

Kronecker product” (NKP) problem. The main idea behind the factorization is the following:

Every Kronecker product resembles a collection of all pair-wise products of its elements. This is

equivalent to a rank-one matrix constructed from the outer product of two vectors if we arrange

the corresponding elements into the matrix in the correct manner. Therefore, in the presence

of noise, we have a matrix which is approximately rank-one. However, due to the Eckart-Young

theorem we know that the truncated SVD provides the best rank-one approximation in the

LS sense. Therefore, we can use it for Kronecker and Khatri-Rao factorization. The difference

is that in the latter case, we proceed column by column whereas Kronecker factorization is

achieved in one step. The corresponding algorithms are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 Least-Squares factorization of a Khatri-Rao product

• Consider a matrix A ∈ CM ⋅N×P which is an approximation of the Khatri-Rao product
between a matrix W ∈ CM×P and a matrix X ∈ CN×P , i.e., A ≈W ◇X.

• Set p = 1.

1. Let ap, wp, and xp be the p-th columns of the matrices A,W , andX, respectively.
By the definition of the Khatri-Rao product we then have ap ≈wp ⊗xp.

2. Reshape the vector ap into a matrix Ãp ∈ CN×M , such that vec{Ãp} = ap. It is

easy to see that this matrix satisfies Ãp ≈ xp ⋅wT
p .

3. Compute the singular value decomposition of Ãp as Ãp = UpΣpV
H
p . Now the best

rank-one approximation of Ãp is given by truncating the SVD, i.e., ŵp =
√
σ1 ⋅ v∗1

and x̂p =
√
σ1 ⋅ u1, where u1 and v1 represent the first column vectors of Up and

V p, respectively, and σ1 is the largest singular value.

4. If p < P , set p = p + 1 and go to 1).

• The final solution is given by Ŵ = [ŵ1, . . . , ŵP ] and X̂ = [x̂1, . . . , x̂P ].

It is important to note that the “Least Squares Khatri-Rao factorization” presented in

Algorithm 1 is not completely unique. There is a scaling ambiguity of one non-zero complex

number per column p in every Khatri-Rao product, since xp⊗wp = (αp ⋅xp)⊗( 1
αp
⋅wp) ∀αp ∈

C≠0.

The corresponding algorithm for factorizing a Kronecker product is summarized in Algo-

rithm 2. In order to find B̃ from B in Algorithm 2 we remember the fact that Y ⊗ Z
creates M ×N block matrices, each of these being a scaled version of Z. On the other hand,
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3. Matrix-based algebraic concepts

Algorithm 2 Least-Squares factorization of a Kronecker product

• Consider a matrix B ∈ CM ⋅P×N ⋅Q which is an approximation of the Kronecker product
between a matrix Y ∈ CM×N and a matrix Z ∈ CP×Q, i.e., B ≈ Y ⊗Z.

1. Rearrange the elements of B into a matrix B̃ ∈ CP ⋅Q×M ⋅N such that B̃ ≈ vec{Z} ⋅
vec{Y }T, cf. Figure 3.1.

2. Compute the singular value decomposition of B̃ as B̃ = UΣV H. Now the best rank-
one approximation of B̃ is given by truncating the SVD, i.e., vec{Ŷ } = ŷ =√σ1 ⋅v∗1
and vec{Ẑ} = ẑ = √σ1 ⋅ u1, where u1 and v1 represent the first column vectors of
U and V , respectively, and σ1 is the largest singular value.

• The final solution is given by Ŷ = unvecM×N {ŷ} and Ẑ = unvecP×Q {ẑ}.

each column of B̃ should be a scaled version of vec{Z}, and the scaling coefficients are

given by vec{Y }. Consequently, we extract the corresponding M ×N blocks of B, vector-

ize them, and collect the resulting vectors as columns of B̃. This process is illustrated for

the noise-free case in Figure 3.1. Since the resulting matrix satisfies B̃ ≈ vec{Z} ⋅ vec{Y }T,
we find estimates for vec{Z} and vec{Y } via a rank-one approximation of B̃. Concerning

the uniqueness, for the Kronecker factorization there is only one scaling ambiguity, since

Y ⊗Z = (α ⋅Y )⊗ ( 1
α
⋅Z), ∀α ∈ C≠0.

Note that both algorithms are easily generalized to the factorization of more than two

terms. The factorization of an R-fold Khatri-Rao product F 1 ◇ F 2 . . . ◇ FR [RH08a] or an

R-fold Kronecker product G1 ⊗G2 . . . ⊗GR is reduced to the rank-one approximation of an

R-dimensional matrix, which is a tensor for R ≥ 2. As we discuss in Section 4.1, a good rank-

one approximation is achieved by computing the truncated Higher-Order SVD. However, this

truncated HOSVD is not the LS-optimal solution. For the LS-optimal rank-one approximation

of a tensor we need to resort to iterative algorithms, e.g., the HOOI algorithm [dLdMV00b].

However, since the loss in accuracy of the truncated HOSVD compared to the HOOI algorithm

is typically very small, we propose to use the truncated HOSVD for R-D Least-Squares Khatri-

Rao and Kronecker factorizations.

An extension of the Kronecker factorization was proposed under the name Kronecker-

Product SVD in [vL09]. It considers the decomposition of a given matrix into the sum of

Kronecker products. This is easily achieved by computing B̃ first, as in Algorithm 2, and then

considering all its principle components, instead of only the dominant one. In that respect, we

can compute the best approximation of a matrix as the sum of r Kronecker products. Notes

on properties and applications of the Kronecker-Product SVD can be found in [vL09].
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Figure 3.1.: Rearranging a Kronecker product B = Y ⊗Z into a rank one matrix B̃ = vec{Z} ⋅
vec{Y }T. The exact factorization (i.e., the noise-free case) is shown for illustration purposes.
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4. Multi-linear (tensor) algebraic concepts

In this chapter we review the fundamentals of multilinear (tensor) algebra that are used

throughout the thesis in order to store and manipulate multidimensional signals in their native

R-dimensional form. We begin by a review of algebraic tools for tensors and state some useful

properties. Afterwards, we review the most important tensor decompositions for this thesis,

namely, the Higher-Order SVD and the Canonical Polyadic (CP) decomposition and discuss

their applications. A major goal of this chapter is to collect results on multilinear algebra

that are useful for engineers in a compact and systematic fashion that can serve as a quick

reference. In some sense it can be viewed as a “tensor extension” of matrix-based compendia

(such as [PP08] or [MN95]). It also extends existing tensor surveys such as [KB09, CLdA09]

by some aspects that are not discussed there, e.g., the consistent permutation of the tensor

unfoldings or the concatenation of tensors and its algebraic rules.

4.1. Tensor algebra

The term tensor is used in different ways among different scientific communities and therefore,

it is used in different meanings throughout different disciplines. Since the focus of our discussion

is on the signal processing aspects, we adopt a simple definition by assimilating tensors with

their coordinate-system dependent representation as a multi-dimensional array of numbers. In

that respect, the term tensor is used synonymously with the term multi-way array and an R-D

tensor is defined a collection of numbers referenced by R indices. Consequently, up to R = 2

tensors are no different from matrices. However, for R > 2 new operations are needed.

Multi-way data analysis has recently become very popular in several scientific fields, rang-

ing from psychometrics and chemometrics over array signal processing and communications to

biomedical signal processing, image compression or numerical mathematics (cf. Sections 4.2

as well as [KB09] for a more comprehensive discussion of applications with references). The

reason for its popularity is that tensor-based signal processing features some significant fun-

damental advantages (tensor gains) compared to the matrix-based counterparts. Firstly, we

can define multi-linear decompositions that are essentially unique by itself, thus not requiring

any additional artificial constraints on the factors to ensure uniqueness (which is required for

matrices, cf. Section 3.3). Secondly, identifiability is improved, allowing more components to

be present jointly. Thirdly, tensors allow for more efficient denoising since we can exploit the
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4.1. Tensor algebra

multi-dimensional structure in a more direct way.

In this section we provide a short summary of the notation used throughout this thesis

and the main important properties of these operators. Note that our notation is in line with

standard notation from other frequently cited papers [dLdMV00b, KB09].

An R-D tensor or R-way array is denoted as A ∈ CM1×M2...MR with size Mr along mode (or

dimension) r for r = 1,2, . . . ,R. As a short-hand notation for the total number of elements we

use the convention M =∏R
r=1Mr. The r-mode vectors of a tensor are the vectors we obtain if

the r-th index is varied and all other indices are kept fixed. They represent the generalization

of row vectors and column vectors of matrices. We visualize the r-mode vectors of a three-way

tensor in Figure 4.1.

The vector space spanned by the r-mode vectors is called r-mode subspace or short r-

space of A. Moreover, an Mr × M
Mr

matrix containing all r-mode vectors as its columns is

called r-mode unfolding of A. The ordering of the columns in the r-mode unfolding defines

how to arrange the remaining R−1 indices. Any permutation of these is a valid unfolding and

the choice is somewhat arbitrary, as long as it is used consistently. Popular choices include:

• Forward column ordering: Start by varying the first index, then the second, up to the(r − 1)-th, continue with the (r + 1)-th all the way up to the R-th index, which is varied

last. This is somehow the most natural choice, as it coincides with the standard way

to store multi-dimensional data in the memory. It is for instance the column ordering

which is returned by MATLAB’s reshape command1.

• Reverse column ordering: Like forward but in reverse ordering, starting with the R-th

index and proceeding backwards to the first.

• Forward cyclical: Start with the (r + 1)-th index, then the (r + 2)-th, all the way to the

R-th index, then start from the first and proceed forward up to the (r − 1)-th index.

• Reverse cyclical: Likewise, the forward cyclical column ordering can be reversed by

starting with the (r − 1)-th index and proceeding backwards, up to the (r + 1)-th. This
convention was proposed by [dLdMV00b] and has since become standard practice in the

signal processing community. Therefore, this is the column ordering chosen in this thesis.

An r-mode unfolding in reverse cyclical column ordering is denoted by [A](r). We visualize

these unfoldings in a 3-D example in Figure 4.1.

1In MATLAB, the 1-mode unfolding in forward column ordering is obtained via
reshape(X,M(1),prod(M(2:R))), where X is an R-way array with M = size(X).
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Figure 4.1.: Unfoldings of a 4 × 5 × 3 tensor in reverse cyclical column ordering.
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The higher-order extension of the Frobenius norm, also referred to as higher-order norm

[dLdMV00b], is symbolized as ∥A∥H. Like the Frobenius norm of a matrix, it is defined as

the square-root of the sum of the squared magnitude of all its elements. Therefore, it is

obviously equal to the Frobenius norm of an arbitrary unfolding and to the Euclidean norm

of an arbitrary vectorization, i.e.,

∥A∥H = ∥[A](r)∥F = ∥vec{[A](r)}∥2 , r = 1,2, . . . ,R, (4.1)

for arbitrary R-D tensors A.

The r-mode product between a tensor A and a matrix U r refers to an r-linear transfor-

mation, i.e., a transformation which is linear in the r-th mode. Such a transformation can be

expressed via the multiplication of all r-mode vectors by a matrix U r from the left. We denote

it as A ×r U r. From its definition it satisfies the following important property

[A ×r U r](r) = U r ⋅ [A](r) . (4.2)

For repeated r-mode products, we introduce the following short-hand notation

A
R⨉
r=1

rU r =A ×1 U1 . . . ×R UR. (4.3)

The rank of the r-mode unfolding (i.e., the dimension of the r-space) of a tensor A is called

r-rank of A. Note that, unlike for matrices, for tensors all r-ranks (also called multilinear

ranks) can be different.

The outer product of an R1-dimensional tensor A and an R2-dimensional tensor B is

symbolized by A ○ B which yields an R1 + R2-dimensional tensor containing all pair-wise

products of all elements in A and all elements in B. It is therefore compatible with the outer

product of two vectors a and b (R1 = R2 = 1), which yields a matrix, i.e., a ○ b = a ⋅ bT. The

outer product is strongly linked to the Kronecker product since the matrix A⊗B and the 4-D

tensor A ○B contain the same elements. Outer products can also be used in a constructive

manner: much like a matrix of rank r can be constructed as a sum of r rank-one matrices, a

tensor of rank r is obtained by summing r rank-one tensors. More specifically, we define the

tensor rank or simply rank of A as the smallest possible integer number r such that A can

be written as a sum of r rank-one tensors. An R-D tensor is rank-one if it can be written as

the outer product of R non-zero vectors.

The tensor rank is not directly related to the multilinear ranks, it only provides an upper

bound since we have rank(X ) ≥ r-rank(X ),∀r = 1,2, . . . ,R [KB09]. Determining the rank
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of a given tensor has been shown to be an NP-hard problem [Has90]. Another interesting

property is that the rank of a given tensor can be different over R and C, a famous example

for this is discussed in [Kru89, Ten00]. Also, if we draw the elements of a tensor randomly

from a continuous distribution, we do not get only one (“generic”) rank with probability one

but we may get several (“typical”) ranks with non-zero probability. An example is a 2 × 2 × 2
tensor which has generic rank 2 over C but the typical ranks 2 and 3 over R (cf. [Kru89] for

examples). Finding a low-(tensor-)rank approximation of a given tensor is in general an ill-

posed problem since the best rank-k approximation may not even exist [Paa00, dSL08]. Still it

is of great practical significance to find good low-rank approximations of tensors, see Chapter

6 for a discussion on approximate CP decompositions. On the other hand, multilinear rank

reduction is much better understood, see [dLdMV00b] for details on optimal and suboptimal

r-rank reduction techniques.

The concatenation of two tensors along the r-th mode [HRD08] is symbolized via [A r B].
The r-mode vectors of the resulting tensor are given by the r-mode vectors of A stacked on

top of the r-mode vectors of B. In other words, we have

[A r B](r) =
⎡⎢⎢⎢⎢⎣
[A](r)[B](r)

⎤⎥⎥⎥⎥⎦ . (4.4)

Note that r-mode products, r-mode unfoldings, and r-mode concatenations satisfy the follow-

ing important properties

[A ×1 U1 . . . ×R UR](r) = U r ⋅ [A](r) ⋅ (U r+1 ⊗ . . .⊗UR ⊗U1 ⊗ . . .⊗U r−1)T (4.5)

A ×r U r ×p Up =A ×p Up ×r U r where r ≠ p (4.6)

A ×r U r ×r V r =A ×r (V r ⋅U r) (4.7)

[A r B] ×p Up = [A ×p Up r B ×p Up] where r ≠ p (4.8)

[A r B] ×r [U r W r] =A ×r U r +B ×rW r, (4.9)

A ×r
⎡⎢⎢⎢⎢⎣
Xr

Y r

⎤⎥⎥⎥⎥⎦ = [(A ×rXr) r (A ×r Y r)] , (4.10)

where r, p ∈ {1,2, . . . ,R} and the dimensions of the tensors and matrices areA,B ∈ CM1×...×MR ,

U r,W r ∈ CNr×Mr , V r ∈ CPr×Nr , Xr ∈ CNr×Mr , and Y r ∈ CQr×Mr . The order of the matrices in

the Kronecker product in (4.5) is a direct consequence of the reverse cyclical column ordering

that was chosen for the r-mode unfolding. Property (4.5) is shown in [dLdMV00b] and proper-

ties (4.6), (4.7) (also shown in [dLdMV00b]) are a direct consequence. Moreover, (4.8), (4.9),
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and (4.10) follow straightforwardly by combining (4.4) and (4.5).

As argued in the previous section, we often need to reformulate linear forms into a standard

“canonical” linear vector form. Since r-mode products define linear forms in particular modes,

they represent a special case. As shown in (4.5), the r-mode multiplication is easily transformed

into a matrix multiplication via the r-mode unfolding. However, the remaining difficulty in

the tensor case resides in the fact that the vectorized versions of different unfoldings contain

the same elements in a different order. Consequently, we need to define permutation matrices

which restore the correct ordering. To this end we define the following set of matrices: For

every tensorA ∈ CM1×M2...×MR , there exists a unique set of permutation matrices P
(r)
M1,M2,...,MR

such that

vec{A} = P (r)M1,M2,...,MR
⋅ vec{[A](r)} (4.11)

for r = 1,2, . . . ,R. Since P
(r)
M1,M2,...,MR

are permutation matrices, they satisfy P
(r)−1
M1,M2,...,MR

=

P
(r)T
M1,M2,...,MR

. The vec-operator applied to a tensor vec{A} is defined as the natural extension

of the vec-operator applied to matrices (cf. (3.4)), i.e., all elements are stacked into a column

vector ∈ CM and we stack the indices in ascending order starting with the first, then the second,

and so on up to the R-th index2. For instance, for a 3-D tensor A ∈ CM1×M2×M3 we can write

vec{[A1 3A2 3 . . . 3AM3
]} = [vec{A1}T vec{A2}T . . . vec{AM3

}T]T , (4.12)

where Am ∈ CM1×M2 for m = 1,2, . . . ,M3.

A direct manner of computing the permutation matrix defined in (4.11) via regular and

“permuted column” Kronecker products is outlined in Appendix B.3.

In a sense, we can view the permutation matrices as a direct extension of the commutation

matrices KM,N from Section 3.1.2. In fact, KM,N = P
(2)
N,M since for a matrix A we have[A](2) = AT. As shown in Appendix B.7, the permutation matrices defined in (4.11) can

reverse the order and perform cyclic shifts in an R-fold Kronecker product.

The following theorem provides useful identities for vectorized unfoldings in the 3-D case,

assuming reverse cyclical column ordering.

Theorem 4.1.1. [RH10c] For a 3-D tensor A ∈ CM1×M2×M3 the following vectorized versions

are identical

vec{[A](1)} = vec{[A]T(2)} (4.13)

2This is the natural order of indices when storing multidimensional variables that is also used by MATLAB.
Therefore, this definition is “MATLAB-compatible”, i.e., vec{A} is the same as MATLAB’s A(:).
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vec{[A](2)} = vec{[A]T(3)} (4.14)

vec{[A](3)} = vec{[A]T(1)} . (4.15)

Proof: cf. Appendix B.8.

This theorem was shown in a different manner in [RH10c] where it appears as Lemma 4.

However, the proof in [RH10c] relies on the existence of a unique CP decomposition [Kru77,

Kru89] of A which is not needed for the proof shown in Appendix B.8. Note that a corollary

that follows from this theorem is that some unfoldings can be directly permuted into a consis-

tent order only with the help of the commutation matricesKM,N . Using (3.34) in (4.13), (4.14),

and (4.15), we directly obtain

vec{[A](1)} =KM2,M1⋅M3
⋅ vec{[A](2)} (4.16)

vec{[A](2)} =KM3,M1⋅M2
⋅ vec{[A](3)} (4.17)

vec{[A](3)} =KM1,M2⋅M3
⋅ vec{[A](1)} . (4.18)

In fact, an R-D extension of these identities is possible, as we can show that

vec{[A](r)} = vec{[A]T(r+1)} =KMr+1,
M

Mr+1

⋅ vec{[A](r+1)} , r = 1,2, . . . ,R − 1 (4.19)

for any A ∈ CM1×M2...×MR . Another useful property related to the vec-operator and n-mode

products is the following

vec{A ×1 U1 . . . ×R UR} = (UR ⊗ . . .⊗U1) ⋅ vec{A} (4.20)

since it allows to solve linear forms for the tensor as well. Note that (4.20) can be seen as the

R-D extension of (3.7). Also, to solve the repeated n-mode product in (4.20) for one of the

matrices Un, we can apply (4.5).

As an extension of the identity matrix IN of size N ×N we define an R-D identity tensor

IR,N of size N × N . . . ×N , which is equal to one of all R indices agree (i1 = i2 = . . . = iR)

and zero otherwise. Note that there is a strong link between the 3-D identity tensor and the

reduction matrices introduced in (3.9) given by the following identity

[I3,N ](1) = [I3,N ](2) = [I3,N ](3) = (IN ◇ IN)T = ΞT
N , (4.21)

i.e., all unfoldings of the N ×N ×N identity tensor are equal to the transpose of the N2 ×N
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reduction matrix. A corollary which follows from this is that

[I3,N ×1A ×2B ×3C](1) =A ⋅ (B ◇C)T (4.22)

[I3,N ×1A ×2B ×3C](2) =B ⋅ (C ◇A)T (4.23)

[I3,N ×1A ×2B ×3C](3) =C ⋅ (A ◇B)T . (4.24)

These identities follow by combining (4.5) with (3.11) and (4.21). They are frequently used in

the context of the Canonical Polyadic decomposition [KB09], see also Section 4.2.

Finally, note that this is easily extended to the R-D case: all unfoldings of IR,N are equal

to the Khatri-Rao product between R − 1 identity matrices of size N ×N which reduces an(R−1)-fold Kronecker product to an (R−1)-fold Khatri-Rao product. Therefore, we can write

[IR,N

R⨉
r=1

rF r](p) = F p ⋅ (F p+1 ◇ . . . ◇FR ◇F 1 ◇ . . . ◇F p−1)T . (4.25)

4.2. Tensor decompositions

In this section we present a brief overview of the tensor decompositions relevant to this thesis,

namely, the Higher-Order Singular Value Decomposition (HOSVD) and the Canonical Polyadic

(CP) decomposition. Both can be seen as a possible generalization of the SVD of matrices to

the tensor case [KB09].

4.2.1. Tucker3 (Higher-Order SVD) decomposition

The Higher-Order SVD can be viewed as a special case of the Tucker3 decomposition, which

has been known since [Tuc66]. An R-D extension was proposed in [KNW86]. Tucker3 is

essentially a 3-mode Principle Component Analysis (PCA) and can be expressed as

X = G ×1 V 1 ×2 V 2 ×3 V 3, (4.26)

where X ∈ CM1×M2×M3 , the matrices V r ∈ CMr×pr are the factor matrices of the decomposition,

and the tensor G ∈ Cp1×p2×p3 is referred to as the core tensor. Here, pr refers to the r-rank of

X . Obviously, the decomposition is exact if the matrices V r are chosen to contain a basis for

the r-space of X . The special case where V 3 = IM3
is also referred to as Tucker2. Moreover,

the case where V 3 = IM3
and V 2 = IM2

is called Tucker1 decomposition, see Section 4.3 for

details.

The factor matrices V r are typically chosen to be unitary but this is not required. Therefore,
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the decomposition is not unique as every factor matrix can be post-multiplied with a square

invertible matrix T r if the inverse matrices T −1r are absorbed into the new core tensor. These

degrees of freedom create the ability to find specific sets of factor matrices which give the core

tensor special properties. While it is in general not possible to create a diagonal core tensor (as

in the SVD), one could at least try to make as many elements as possible zero, (e.g., [AH99])

or to maximize its diagonal dominance (e.g., [MvL08]).

Due to its simplicity, a more popular approach is given by the HOSVD introduced in

[dLdMV00a]. The authors propose to choose V r as the pr dominant left singular vectors

of the r-mode unfolding [X ](r). To distinguish this specific Tucker3 decomposition from the

general case shown in (4.26) we use the notation U r for the factor matrices and S for the core

tensor of the HOSVD. In the general R-D case, the HOSVD can be expressed as

X = S ×1 U1 . . . ×R UR = S
R⨉
r=1

rU r (4.27)

whereU r ∈ CMr×pr and S ∈ Cp1×...×pR . The core-tensor S satisfies the so-called “all-orthogonality”

condition [dLdMV00a], which can be written compactly as

[S](r) ⋅ [S]H(r) = diag {[σ(r)21 , . . . , σ(r)2pr ]} , (4.28)

i.e., all its unfoldings are row-orthogonal matrices. Moreover, the Euclidean norms of these

rows are the r-mode singular values σ
(r)
n . Like for the SVD, they appear ordered by magnitude,

i.e., σ
(r)
1 ≥ σ(r)2 ≥ . . . ≥ σ(r)pr , for r = 1,2, . . . ,R. Note that in the tensor case there exist R sets of

r-mode singular values which are in general different. As an example, we depict the HOSVD

of a 3-way tensor X of size 6 × 3 × 5 in Figure 4.2.

Another important question is whether the concept of low-rank approximations also carries

over from the SVD to the HOSVD. For the SVD, the Eckart-Young theorem shows that the

truncated SVD provides the best low-rank approximation in the Frobenius norm sense. Such

a theorem does unfortunately not exist for the HOSVD. While the truncated HOSVD does

provide a good low-rank approximation, it is in general not optimal. However, it can be used

as a starting point for an Alternating Least Squares (ALS)-like algorithm which computes the

best approximation. This concept is discussed in [dLdMV00b] and the corresponding algorithm

is called Higher-Order Orthogonal Iterations (HOOI).

Note that we use the concept of low-rank approximations to suppress the additive noise

of a low-rank desired signal component from a noisy observation (cf. Section 10.2). For this

application, the truncated HOSVD is asymptotically optimal in the high Signal-To-Noise Ratio
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Figure 4.2.: HOSVD of a 3-way tensor X of size 6 × 3 × 5.

(SNR) regime [dLdMV00b]. An improvement from the HOOI algorithm is only visible for low

SNRs, however, even there it is not very significant3 (see, for instance, the simulation result

shown in Figure 7.10). For this reason, we only consider the truncated HOSVD for subspace

estimation unless stated otherwise. To make a clear distinction, truncated quantities are

denoted by a superscript (⋅)[s], i.e., the truncated HOSVD of a tensor X is expressed as

X ≈ S[s] ×1 U [s]1 . . . ×R U [s]R = S[s]
R⨉
r=1

rU
[s]
r . (4.29)

The HOSVD has numerous applications in various areas of signal processing. A famous area

is face recognition, which was pioneered by the introduction of TensorFaces in [VT02a]. Ten-

sorFaces represents a framework for the multilinear analysis of facial expressions from various

subjects. Capturing multiple images of each facial expression for each subject gives rise to

three tensor dimensions (image, expression, subject). More dimensions arise if various lighting

conditions or camera angles are taken into account. The joint processing of all dimensions

allows to remove unwanted influences such as lighting conditions and camera angles and to

generalize over expressions (for face recognition) or over subjects (for facial expression recogni-

tion). As shown in [VT02b], compared to a matrix-based (PCA) analysis of the data, the face

recognition accuracy is significantly improved and artifacts can be removed more efficiently.

Building on those results, further applications in this area have been identified, e.g., facial

expression transfer [VBPP05] or facial expression recognition and compression [WA03]. Other

applications in image and video processing include texture rendering [VT04], watermarking

in MPEG videos [AHB07], hyperspectral image denoising [LB08], or motion tracking using

the tensor null space [CSK09]. Another area where the HOSVD has been successfully ap-

3For a discussion on local minima of the best multilinear low-rank approximation of tensors, the reader is
referred to [IAvHdL10].
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plied is data mining with applications to network modeling [STF06], social network analysis

[ACKY05], or pattern recognition [SE07]. These applications have in common that apply the

HOSVD to perform rank reduction in individual modes and then use parts of the truncated

decomposition, i.e., the core tensor, individual loading matrices, or combinations thereof.

As we demonstrate in Section 10.2, a different application of the truncated HOSVD is signal

subspace estimation for multidimensional signals. This signal subspace can be estimated via

matrices only if a stacking operation is applied to the data such that each column of the

measurement matrix represents a stacked version of one snapshot of the multidimensional

signal. However, such a representation does not account for the structure inherent in the data.

Therefore, we can improve the subspace estimation accuracy by performing a “structured”

subspace estimation based on the HOSVD. The resulting subspace estimate can be combined

with any multi-dimensional subspace-based parameter estimation scheme. We demonstrate the

tensor gain from this enhanced subspace estimate for the family of ESPRIT-type algorithms

numerically in Chapter 11 and analytically in Chapter 12. We discuss two application examples

in Section 9.1 in more detail: 2-D direction of arrival (DOA) estimation in Example 9.2.1 and

geometry-based channel modeling based on measured MIMO channels in Example 9.2.2. An

additional application area is MIMO Radar since it has been shown in [NS10] that single-

pulse and multi-pulse bistatic Radar configurations give rise to a 2-D and a 3-D harmonic

retrieval problem, respectively. We have also shown that based on the HOSVD, a tensor-based

framework for the prediction of frequency-selective time-variant MIMO channels can be found

[MGH08].

All the applications of the HOSVD mentioned here have in common that they obtain a tensor

gain compared to matrix-based approaches since the multilinear rank reduction obtained from

the truncated HOSVD filters out unwanted components in a “structured” manner which yields

a more accurate representation of the data.

4.2.2. CANDECOMP/PARAFAC (CP) decomposition

The SVD can also be viewed as a decomposition of a given rank-d matrix into a sum of d rank-

one matrices constructed from the outer product of the n-th left and right singular vector and

scaled by the n-th singular value for n = 1,2, . . . , d. In the same manner we can decompose a

rank-d tensor into a sum of rank-one tensors which are obtained from the outer product of R

non-zero vectors. This gives rise to a decomposition of the form

X =
d∑

n=1

f (1)n ○ f (2)n ○ . . . ○ f (R)n , (4.30)
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where f
(r)
n is referred to as the loading vector of the n-th component in the r-th mode. Equa-

tion (4.30) describes a very fundamental tensor decomposition which has been known for

many decades under different names, e.g., polyadic form [Hit27], parallel proportional profiles

[Cat44], Canonical Decomposition (CANDECOMP) [CC70], or Parallel Factor (PARAFAC)

analysis [Har70]. We refer to it as CP decomposition which is either seen as an abbreviation

for CANDECOMP/PARAFAC [KB09] or Canonical Polyadic decomposition. Note that since

the sum in (4.30) is commutative and the products are associative, the loading vectors f
(r)
n

are determined only up to an inherent permutation ambiguity (between different n) and a

scaling ambiguity (between different r). Except for these indeterminacies, the decomposition

is unique only due to its structure. This is a fundamental advantage over the bilinear (ma-

trix) decompositions, which require additional assumptions to obtain a comparable uniqueness

(cf. Section 3.3). Such assumptions are often unwanted since they may not have any physical

meaning.

The CP decomposition in (4.30) may be formulated in a number of different ways. For

instance, for R = 3 we often find the following equivalent relations

[X ](1) = F (1) ⋅ (F (2) ◇F (3))T (4.31)

[X ](∶,∶,k) = F (1) ⋅ diag {[F (3)](k,∶)} ⋅F (2)T (4.32)

[X ](i,j,k) = d∑
n=1

f
(1)
i,n ⋅ f (2)j,n ⋅ f (3)k,n

(4.33)

where F (r) = [f (r)1 , . . . ,f
(r)
d
] ∈ CMr×d is the loading matrix in the r-th mode and f

(r)
i,n repre-

sents the i-th element of the vector f
(r)
n . Moreover, [X ](∶,∶,k) represents the k-th three-mode

slice, i.e., the matrix of all elements where the third index in the tensor is equal to k. Also,

diag {[F (3)](k,∶)} is a diagonal matrix containing the elements of the k-th row of F (3) on its

main diagonal.

A more compact representation is obtained by using the identity tensor IR,N introduced in

Section 4.1 which yields the following representation of the CP decomposition in the general

R-D case

X = IR,d ×1 F (1) . . . ×R F (R) = IR,d

R⨉
r=1

rF
(r). (4.34)

One of the advantages of (4.34) is that its structure is very similar to the Tucker3 decomposition

shown in (4.26). This shows that for the CP, the core tensor has been diagonalized. However,

this is only possible as long as the decomposition is exact, i.e., the tensor has rank d (there is
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Figure 4.3.: CP decomposition of a 3-way tensor X of rank d = 3 in outer product notation
and n-mode product notation.

no additive noise).

A big difference between the HOSVD and the CP is that while the HOSVD is easily com-

puted via SVDs of the unfoldings of the tensor, such a direct computation is in general not

possible to find the CP. Instead, we need to resort to iterative techniques, such as Alternating

Least Squares (ALS)-like procedures [CC70, Har70, KdL80]. However, these may require many

iterations to converge and are not guaranteed to find the global optimum. This is the main

motivation for deriving semi-algebraic solutions for approximate CP decompositions, discussed

in Part II of this thesis.

For illustration purposes, we visualize the structure of the CP decomposition for a 3-way

tensor X of rank 3 in Figure 4.3. The left-hand side shows the outer product notation X =

∑3
n=1 an○bn○cn (cf. (4.30)). On the other hand, the right-hand side depicts the n-mode product

notation X = I3,3 ×1A×2B ×3C (cf. (4.34)), where A = [a1 a2 a3], B = [b1 b2 b3], and
C = [c1 c2 c3].
Note that numerous applications exist, where the signal of interest may be modeled as a

linear superposition of rank-one tensors. These range from psychometrics [CC70, Har70] and

chemometrics [AB03] over array signal processing [SBG00] and communications [SGB00] to

biomedical signal processing [Möc88, MHH+06, dVVdL+07], image compression [SL01], data

mining [KB06], or numerical mathematics [HKT05]. We have successfully applied the CP

decomposition (via the SECSI framework introduced in Part II of this thesis), for biomedial

signal processing applications [WRH+09, BCA+12], blind-channel estimation in Space-Time-

Coded MIMO systems [RSS+11], model order estimation [DRWH10], as well as parameter

estimation for multidimensional signals with colored noise [DSR+10].
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4.3. Other decompositions

Even though the HOSVD and the CP are the only decompositions discussed in this thesis, we

would like to provide a brief outlook to different tensor decompositions as well. There have

been many specializations as well as generalizations of these ideas which have become viable

tools in different signal processing applications.

Firstly, the special case of Tucker3 where the third factor matrix is equal to an identity

matrix is referred to as Tucker2 decomposition [Tuc66]. Likewise, if the second and the third

factor are identities we call the decomposition Tucker1 [Tuc66] (strictly speaking, this is not

a tensor decomposition any more since Tucker1 is exactly the same as a purely matrix-based

PCA).

A combination of CP and Tucker is given by block tensor decompositions. Examples in-

clude the (L,L,1), the (L,M,N), and the (L,M, ⋅) decomposition with applications in blind

multiuser detection for DS-CDMA systems [LB08], which are discussed in [dLdB08].

A CP decomposition which explicitly models rank deficiencies in the loading matrices has

become known as the PARALIND decomposition [BHS05, BHSL09]. Moreover, the Tensor-

Train (TT) decomposition [Ose11] represents a numerically stable tensor decomposition (based

only on SVDs) with only slightly more parameters than the CP, which is especially attractive

for very high-dimensional data.

Another extension of the CP decomposition is known as PARAFAC2 [Har72]. This decom-

position allows one of the loading matrices to vary over slices, i.e., instead of modeling the k-th

three-mode slice as A ⋅diag {[C]k,∶} ⋅B as for the CP, we have A ⋅diag {[C]k,∶} ⋅Bk so that B

does not need to “remain constant” over the 3-mode slices of the tensor. This decomposition

is only unique under additional constraints, e.g., BH
k ⋅Bk should be invariant over k. It has

been shown that PARAFAC2 can be used to handle signal delays over space when applied to

space-time-frequency tensors [WJG+10b].
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5. Summary of the advanced algebraic concepts

In the first part of this thesis we have provided a set of useful tools for algebraic manipulation

of certain expressions. In particular, we have investigated various types of linear forms and

quadratic forms and their reformulation into simple “canonical” versions. These canonical

versions often allow for direct solutions, e.g., a canonical linear vector form can be solved for

the unknown parameters in a Least-Squares optimal manner via a pseudo-inverse. Likewise,

quadratic forms and ratios of quadratic forms are strongly linked to eigenvectors and gener-

alized eigenvectors of Hermitian matrices, respectively. We have also shown that Kronecker

and Khatri-Rao products can be factorized in a Least-Squares optimal manner. The solutions

were outlined for the case where one factor is known as well as for the case where both factors

are unknown.

Subsequently, we have reviewed elementary concepts of multi-linear (tensor) algebra, which

enable storage and manipulation of multi-dimensional signals in their natural multi-dimensional

form. After providing definition and important properties of elementary operators such as

unfoldings, n-mode products, or n-mode concatenation, we have outlined two of the most fre-

quently used tensor decompositions, the Tucker3 decomposition in form of the Higher-Order

SVD and the CANDECOMP/PARAFAC (CP) decomposition.

5.1. Relevance to later parts of the thesis

In the following parts of this thesis we use the results presented in this part extensively. In

particular, the vectorization of linear forms is employed in Part III for deriving the first-order

perturbation analysis for the estimation error in tensor-based parameter estimation schemes.

This first-order expansion requires vectorizing different types of linear forms, including matrix

product linear forms and Kronecker products (cf. Theorem 12.4.1). We also use it in Part IV

for rewriting the transmission equations in a two-way relaying system, e.g., in the derivation

of the ANOMAX transmit strategy (cf. Section 16.3).

The rearrangement of quadratic forms, such as (3.39) is extensively used in Part IV, e.g.,

for the derivation of the RAGES (Rate-Maximization via Generalized Eigenvectors for Single

Antenna Terminals) strategy, where we use it to show that the sum-rate can be expressed as

a product of two ratios of quadratic forms. At this point, the link between ratios of quadratic

forms and generalized eigenvectors outlined in Section 3.2 is also exploited to derive a semi-
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algebraic solution.

The EVD and the SVD discussed in Section 3.3 form the basis for low-rank approximations

of noisy observations which are used for denoising in Part II and Part III.

Moreover, the Least-Squares Khatri-Rao factorization introduced in Section 3.4 is the key

element to the R-D extension (R > 3) of the SECSI framework for efficient CP decomposition

discussed in Part II of the thesis. It is also one of the two steps of the Tensor-Based Channel

Estimation (TENCE) algorithm for channel estimation in two-way relaying which is shown in

Part IV, Chapter 15.

The subsequent Section 4.1 is used for the tensor-based algebraic manipulations in the entire

Part II and III, and even parts of Part IV (Chapter 15).

Finally, the Higher-Order SVD and the CP decomposition form the basis for Part II of

this thesis. Particularly, the fact that they can be represented in a very similar algebraic

form via repeated n-mode product has been the motivation to find a CP decomposition by

first computing the HOSVD and then applying further processing to it. The HOSVD is

also the basis for the tensor-based subspace estimation scheme (cf. Section 10.2) used for

Tensor-ESPRIT-type parameter estimation algorithms discussed in Part III. Moreover, the

CP decomposition is employed in Part IV to facilitate the design of the relaying strategy

during the training phase needed for TENCE (cf. Chapter 15).

5.2. Bibliographical notes and further reading

Many of the matrix-based results described in Chapter 3 can be found in dedicated matrix

algebra books. For instance, “The matrix cookbook” [PP08] was long known1 as a standard

compendium on many useful algebraic results, such as linear and quadratic forms, Kronecker

and Khatri-Rao products, or derivatives. It comprises a collection of results from many sources.

For instance, as mentioned earlier, [Bre78] already lists many properties of the Kronecker and

the Khatri-Rao product (which date back to the much earlier [Neu69] and [KR68], respec-

tively). While the fact that Kronecker and Khatri-Rao products can be vectorized into a

canonical linear vector form seems obvious at first sight, we could not find a reference for the

explicit expressions presented in Proposition 3.1.1 and Proposition 3.1.2, respectively.

The history of the SVD/EVD goes back even further. As shown in [Ste93], early definitions

of the SVD date back to the late 19th century and decompositions similar to the EVD have

been known since the early 19th century. It is the widespread immersive use of digital signal

processing nowadays that has sparked new applications for this long-known mathematical

1Unfortunately, as of 2010, the matrix cookbook is no longer maintained by the authors.
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theory.

Concerning the Least-Squares Khatri-Rao and Kronecker factorization, it is important to

mention [LP93], which discusses the factorization of Kronecker products. In fact, both cases

(one factor known, both factors unknown) are discussed, however, the solution is derived in a

different manner and stated in a different algebraic form. We relate our expression to [LP93] in

Section B.6. An example where Kronecker factorization has been applied is given by [WJS08],

where the authors find estimates of Kronecker-structured covariance matrices which appear, for

instance, in certain MIMO channel models. The extension to the Khatri-Rao factorization is

more or less trivial, as it proceeds by applying the Kronecker factorization column by column.

It has been used by other authors without citing any source, e.g., in [LV08] or [CST10].

For the multilinear algebra and the tensor decompositions, a comprehensive survey is given

in [KB09]. In particular, [KB09] lists not only the mathematical implications of tensor algebra

and the corresponding decompositions but also provides accurate historical context and quotes

many practical applications of the theory. However, some aspects presented in this part of the

thesis are not discussed, e.g., the permutation matrices introduced in (4.11). Note that several

MATLAB toolboxes are available for performing multilinear algebraic operations and com-

puting various tensor decompositions. Popular examples include the “N -way toolbox” [AB00]

the “MATLAB Tensor Toolbox” from [BK+12], or the “Tensor Package” from [CLdA11]. In

this thesis, parts of the N -way toolbox [AB00] abd the MATLAB Tensor Toolbox [BK+12] are

used in Part II as a benchmark for our semi-algebraic solutions, see Section 7.5.

Note that this part of the thesis could still be significantly expanded with many more alge-

braic concepts that are useful for engineers. For instance, matrix differential calculus (which

is very convenient for computing gradients) was not discussed here but many results exist

[MN95, PP08]. In light of the increasing importance of multilinear algebra, the differentiation

with respect to tensors could be investigated as well.
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Semi-Algebraic CP Decomposition (SECSI)
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This part of the thesis is devoted to the efficient computation of the decomposition of a

given multi-dimensional signal into rank-one components known as Canonical Polyadic (CP)

decomposition. There is a large number of applications where the signal of interest can be

modeled as a linear superposition of multi-dimensional rank-one components that have to be

separated. These range from psychometrics and chemometrics over array signal processing and

communications to biomedical signal processing, image compression or numerical mathematics.

Existing algorithms to compute the CP decomposition are very often based on iterative

techniques such as Alternating Least Squares (ALS). The main drawback of ALS-based schemes

is that they may require a very large number of iterations to converge and are not guaranteed

to converge to a global optimum. In particular, ALS-based approaches are very sensitive to

ill-conditioned data.

Therefore, we introduce a novel semi-algebraic framework for computing an approximate CP

decomposition of noisy multi-dimensional data based on Simultaneous Matrix Diagonalization

(SECSI). We demonstrate that due to the structure of the problem, multiple Simultaneous

Matrix Diagonalizations (SMDs) can be solved which gives rise to multiple estimates of the

model parameters. The final estimate can then be chosen in a subsequent step. This approach

allows flexible control over the complexity-performance trade-off and can be used to tailor

the algorithm to the specific needs of the various applications. We establish the full system of

possible SMDs in the 3-D and the general R-D case and propose several heuristic algorithms to

select which SMDs to solve and how to obtain the final estimate of the CP model. Numerical

simulations demonstrate the reduction on computational complexity and the improvement in

robustness against ill-conditioned data compared to state-of-the-art algorithms.

This part of the thesis is organized as follows: Chapter 6 contains an introduction with a

motivation, the state of the art review, and the definition of the data model. The derivation of

our novel SECSI framework and its evaluation are presented in Chapter 7. Chapter 8 contains

a summary and outlines possible future work. Appendix C contains proofs and derivations for

this part.



6. Introduction to efficient tensor decompositions

6.1. Motivation, state of the art and own contribution

Separating linear mixtures into components is a fundamental task in signal processing due to

its wide range of applications. Tensor-based signal processing schemes represent a promising

approach for this task. This is due to the fact that multilinear decompositions offer funda-

mental advantages over their bilinear (matrix) counterparts. In general, the tensor structure

allows more efficient denoising, which can be used to compute a tensor-based signal subspace

estimate [HRD08]. Additionally, a trilinear (in general, a multilinear) mixture features inher-

ent essential uniqueness while bilinear mixtures require additional assumptions. Furthermore,

identifiability is improved, allowing more components to be present.

In this part of the thesis we focus on the decomposition of a given multidimensional signal

into a sum of rank-one components, which is referred to as CANDECOMP / PARAFAC [CC70,

Har70], or Canonical Polyadic (CP) decomposition, cf. Section 4.2.2 for a definition and prop-

erties of the CP decomposition. There exist many applications where the underlying signal of

interest can be represented by a trilinear or multilinear CP model. These range from psycho-

metrics [CC70, Har70] and chemometrics [AB03] over array signal processing [SBG00] and com-

munications [SGB00] to biomedical signal processing [Möc88, MHH+06, dVVdL+07, WRH+09,

BCA+12], image compression [SL01] or numerical mathematics [HKT05] (see also [KB09] and

references therein).

In practice, the signal of interest is typically contaminated by additive noise. Therefore

we need to find an approximate CP decomposition of the noisy data. This is a challenging

problem, since finding best low-rank approximations is itself an ill-posed problem [KB09]. Fully

algebraic solutions are usually not available, unless strong approximations are made [SK90]

(leading to severe fitting errors) or the decomposition possesses a specific structure [CST10]

(for instance, a Toeplitz-structured loading matrix).

However, many iterative algorithms for computing approximate CP decompositions exist.

A popular class of algorithms is based on the Alternating Least Squares (ALS) procedure

[KdL80, BSG99] where linear least squares fits are computed for each dimension separately,

alternating through dimensions in a sequential manner. The original idea goes back to [CC70,

Har70, KdL80] and many improvements have been proposed since then, e.g., enhanced line

search (ELS) [RC05, RCH08] or Tikhonov regularization [NdLK08]. The main shortcoming
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of ALS-based algorithms is that they may require a large number of iterations to converge

and are not guaranteed to reach the global optimum. This motivates searching for alternative

approaches that are more reliable and have a lower computational complexity.

There exist also algorithms that are not directly based on ALS. For instance, [ADK11]

contains a partial survey about optimization-based approaches, including a non-linear least

squares (CPNLS) as well as a gradient-based method (CPOPT). In [CLdA09], quasi-Newton

and gradient descent based methods with periodic ELS have been reported. A robust iterative

fitting framework which minimizes least absolute errors is presented in [VRSG05] along with

two algorithms, one based on interior point methods and a second one based on weighted

median filtering.

The links between the CP decomposition and Simultaneous Matrix Diagonalizations (SMDs)

were already pointed out by [vdVP96, AFCC04] for the symmetric case and by [dL04a, dL06]

for the non-symmetric case. Recently, [AFCC04] was also generalized to the non-symmetric

case [LA11], which differs from [dL04a] in the way the unfoldings are defined. However, these

approaches have in common that only a single SMD is solved and all parameters are estimated

from the solution of this SMD.

In this part of the thesis, we present a SEmi-algebraic framework for computing an ap-

proximate CP decomposition via SImultaneous Matrix Diagonalizations (SECSI) [RH08b,

RH08a]1. SECSI is applicable if the tensor rank is less than or equal to the size of the tensor

in at least two modes. We show that due to the symmetry of the problem instead of only one,

many SMDs can be constructed, and we establish the full set of possible SMDs. Therefore,

if accuracy is the prime concern, all SMDs can be solved to obtain multiple estimates and

the “best” solution can be selected in a subsequent step. On the other hand, if computa-

tional complexity is critical we can solve one or a few of the SMDs. Moreover, the selection

can be based on an exhaustive best matching scheme which minimizes the reconstruction er-

ror or on appropriate heuristics with a lower computational complexity. Consequently, the

complexity-accuracy trade-off can be controlled flexibly, allowing the algorithms to adapt to

applications with different needs. Such an adaptation is also beneficial when correlations exist

in some dimensions, leading to asymmetric conditioning of the decomposition. We investi-

gate the three-way as well as the general R-way case in Sections 7.1 and 7.2, respectively,

and propose heuristics to decide which SMDs to solve and how to pick the final estimates in

1In the earlier conference versions [RH08b] and [RH08a], the SECSI framework was referred to as “closed-form
solution” referring to the fact that albeit SMDs are computed iteratively this is also true for SVDs and matrix
inversions, which are usually considered closed form. We have modified the name to semi-algebraic solution
to account for the iterative nature of SMD algorithms and the fact that they are not guaranteed to find the
global optimum.
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Section 7.4. Moreover, we investigate the special cases of a two-slab and a two-component

CP decomposition in Section 7.3, showing that in both cases, the SECSI framework reduces

to known fully algebraic solutions [SK90], alleviating the need for computing any SMD. We

compare the achievable accuracy and the complexity in terms of run-times in Section 7.5 via

simulations based on synthetical data.

6.2. Notation and data model

6.2.1. R-way CP Decomposition

We model our observed data tensor X ∈ C
M1×M2...×MR as a desired signal component X 0

superimposed by additive noise, i.e.,

X = X 0 +N , (6.1)

where the tensor N ∈ CM1×M2...×MR contains samples of the zero mean additive noise. The

rank of our desired signal component X 0 is denoted by d and assumed to be known. In

practice d has to be estimated by appropriate model order selection schemes, such as the Core

Consistency Diagnostics (CORCONDIA) [BK03] or the R-D Exponential Fitting Test (EFT)

[DHRD07]. For a comparison of tensor-based model order selection techniques, the reader is

referred to [DRHdS11].

Since X 0 is rank-d, it can be decomposed into a sum of d rank-one tensors. As discussed in

Section 4.2.2, we can express the CP decomposition of X 0 via (cf. (4.30) and (4.34))

X 0 =
d∑

n=1

f (1)n ○ f (2)n ○ . . . ○ f (R)n (6.2)

= IR,d ×1 F (1) ×2 F (2) . . . ×R F (R) = IR,d

R⨉
r=1

rF
(r), (6.3)

where f
(r)
n ∈ CMr×1 is referred to as the loading vector of the n-th component in the r-th mode

and F (r) = [f (r)1 , . . . ,f
(r)
d
] ∈ CMr×d is referred to as the loading matrix in the r-th mode.

Recall that since the sum in (6.2) is commutative and the products are associative, the

loading vectors f
(r)
n are determined only up to an inherent permutation ambiguity (between

different n) and a scaling ambiguity (between different r).

It has been shown that many practical problems can be expressed in the form of (6.3),

which explains why the CP decomposition has been successfully applied in a broad field of ap-

plications ranging from psychometrics over chemometrics to communications and array signal
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processing [KB09].

One of the major challenges in data-driven applications is that only a noise-corrupted version

of the rank-d tensor X 0 is observed which means that we cannot find an exact but only an

approximate CP decomposition providing a “best fit” of the observed data according to a

previously selected criterion, e.g., the higher order norm.

It is apparent that (6.3) is algebraically very similar to the truncated HOSVD discussed in

Section 4.2.1. The truncated HOSVD of X 0 can be expressed as (cf. (4.29))

X 0 = S[s] ×1 U [s]1 ×2 U [s]2 . . . ×R U [s]R = S[s]
R⨉
r=1

rU
[s]
r , (6.4)

where pr is the r-rank of X 0, S
[s] ∈ Cp1×p2...×pR is the core tensor, and U

[s]
r ∈ CMr×pr contains

the pr dominant left singular vectors of [X 0](r) for r = 1,2, . . . ,R.

Note that (6.4) and (6.3) have a very similar algebraic structure. This similarity can be

exploited to compute a CP decomposition efficiently. We start with the HOSVD, which is

easy to compute via matrix SVDs, and then convert the result into a CP decomposition.

This form of preprocessing is also referred to as Tucker compression [CLdA09], a common

approach for dimensionality reduction in tensor-based signal processing. We then compute

the CP decomposition by finding the required transform matrices via SMDs constructed from

slices of the compressed tensor. This is the underlying idea of the SECSI framework which is

derived in the following sections. We start with the 3-way case since it is easier to understand

and to visualize and then show the extension to the general R-way case.

Note that in the presence of noise, the observed tensor X in (6.1) has full n-ranks with

probability one if the elements of N are drawn from a continuous distribution. Therefore,

(6.4) holds only approximately. Moreover, as argued in Section 4.2.1, the best low-rank ap-

proximation of X in the Frobenius norm sense requires the iterative HOOI algorithm since

the truncated HOSVD is in general suboptimal. However, since the improvement the HOOI

algorithm provides compared to the truncated HOSVD is very small, we use the truncated

HOSVD to find (6.4), unless stated otherwise. However, we emphasize that the HOOI or any

other low-rank approximation can be used as well.

6.2.2. Degeneracies

We refer to the CP decomposition as degenerate in the r-th mode if pr < d, i.e., the r-rank

of the desired signal component X 0 is less than the tensor rank d. An r-mode degeneracy

occurs if the r-mode loading matrix F (r) does not have full column rank. This is always the
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case for Mr < d. For Mr ≥ d, degeneracies can be caused by linear dependencies among the

columns of F (r). Due to the way the SMDs are constructed we need another assumption for

non-degeneracy, namely, F (r) needs to have one row where it contains no zero elements.2

For our analysis all the causes of degeneracy are treated in the same manner. As we show in

the subsequent sections, our SECSI framework is applicable if at least two of the R modes are

non-degenerate, allowing for degeneracies in up to R − 2 modes. This implies the assumption

d ≤Mr for at least two values of r = 1,2, . . . ,R.

2While this is an additional assumption needed for the SECSI framework, it is not a very critical one. For
factors drawn from continuous distributions such elements that are equal to zero occur with probability zero.
Loading matrices with many zeros are often the consequence of an underlying structure in which case fully
algebraic solutions like [CST10] may be applicable, or they are the consequence of intrinsic sparseness in the
data in which case suitable sparse decompositions should be used [BK07].
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7. Semi-Algebraic CP Decomposition via Simultaneous

Matrix Diagonalization (SECSI)

This chapter is devoted to the Semi-Algebraic CP decomposition via Simultaneous Matrix

Diagonalization (SECSI) framework. We start by discussing the 3-D case in Section 7.1 for

clarity. The extension to the R-D case is then shown in Section 7.2. Section 7.3 contains the

discussion of some special cases where SECSI reduces to known algebraic solutions. Heuristic

approaches to decide which Simultaneous Matrix Diagonalizations (SMDs) te solve and how to

select the final estimates are introduced in Section 7.4. These give rise to different algorithms

inside the SECSI framework which we evaluate in terms of their achieved estimation accuracy

and computational complexity in Section 7.5. Finally, a summary and an outlook to future

work is provided in Section 7.6.

7.1. Three-way CP

In this section we focus our attention on the three-way CP decomposition for clarity. The

extension to the general R-way CP decomposition is provided in Section 7.2.

7.1.1. Construction of Simultaneous Matrix Diagonalizations (SMDs)

Let us first consider the case that the CP decomposition is non-degenerate in all three modes,

i.e., p1 = p2 = p3 = d. For clarity of presentation, the following derivations relate to the noise-

free case, i.e., X = X 0, since this assumption allows us to write equalities. In the presence of

noise, the following relations hold only approximately. Consequently, the noise-free tensor X

can be expressed as

X = I3,d ×1 F (1) ×2 F (2) ×3 F (3) (7.1)

= S[s] ×1 U [s]1 ×2 U [s]2 ×3 U [s]3 , (7.2)

where the dimension of the truncated HOSVD are now S[s] ∈ Cd×d×d and U
[s]
r ∈ CMr×d (for

a discussion on the use of the truncated HOSVD for noisy data cf. discussion at the end of

Section 4.2.1).

Let us consider the one-mode unfolding of X . Using the representations (7.1) and (7.2) we
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7.1. Three-way CP

find that

U
[s]
1 ⋅ [S[s]](1) ⋅ (U [s]2 ⊗U [s]3 )T = F (1) ⋅ [I3,d](1) ⋅ (F (2) ⊗F (3))T .

Consequently, the subspace spanned by the columns of U
[s]
1 and F (1) are identical. This

implies that there exist a non-singular transform matrix T 1 ∈ Cd×d, such that F (1) = U [s]1 ⋅T 1.

By applying the same reasoning to the two-mode unfolding and the three-mode unfolding of

X we find that F (2) = U [s]2 ⋅ T 2 and F (3) = U [s]3 ⋅ T 3 for non-singular matrices T 2,T 3 ∈ Cd×d.

Inserting these relations into (7.1) we obtain

X = I3,d ×1 (U [s]1 ⋅ T 1) ×2 (U [s]2 ⋅ T 2) ×3 (U [s]3 ⋅ T 3)
= S[s] ×1 U [s]1 ×2 U [s]2 ×3 U [s]3⇒ I3,d = S

[s] ×1 T −11 ×2 T −12 ×3 T −13 (7.3)

⇒ S[s] = I3,d ×1 T 1 ×2 T 2 ×3 T 3. (7.4)

This establishes the relation between the core tensor of the HOSVD and the transform matrices

T r, which can be interpreted in two ways: (a) the inverse transform matrices T −11 , T −12 , and

T −13 diagonalize the core tensor, as shown in equation (7.3) or (b) the transform matrices T 1,

T 2, and T 3 represent the loading matrices of the CP decomposition of the d×d×d core tensor

of the HOSVD, as shown in equation (7.4).

Consequently, it is sufficient to estimate the transform matrices T 1, T 2, and T 3 from the

HOSVD of the data. This can be achieved via Simultaneous Matrix Diagonalizations (SMDs).

To this end, let S
[s]
3 = S[s] ×3 U [s]3 ∈ C

d×d×M3 and D3 = I3,d ×3 F (3). The tensor D3 is

visualized in Figure 7.1. Its three-mode slices are diagonal matrices, given by [D3](∶,∶,n) =
diag {[F (3)](n,∶)}, n = 1,2, . . . ,M3. In other words, the n-th three-mode slice of D3 contains

the n-th row of F (3) on its main diagonal.

With the help of (7.1) and (7.2) it is easily verified that

S
[s]
3 ×1 U [s]1 ×2 U [s]2 =D3 ×1 F (1) ×2 F (2). (7.5)

Inserting F (r) = U [s]r ⋅ T r for r = 1,2 into (7.5) and then multiplying with U
[s]H
r in the r-th

mode for r = 1,2, we obtain

S
[s]
3 =D3 ×1 T 1 ×2 T 2 (7.6)

⇒D3 = S
[s]
3 ×1 T −11 ×2 T −12 . (7.7)
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m1

m2

m3

Figure 7.1.: Structure of the tensor D3 = I3,d×3F (3) ∈ Cd×d×M3 for M3 = 5 and d = 3. The first
index m1 is varied along the rows, the second index m2 along the columns, and the third
index m3 along the lateral direction, starting with the top-left-front element. Gray circles
represent zero elements.

Equation (7.7) shows the link to the joint diagonalization of matrices, since the fixed transform

matrices T 1 and T 2 transform the slices of the full tensor S
[s]
3 into the diagonal matrix slices

of the tensor D3 depicted in Figure 7.1.

Formally, the k-th three-mode slice of a tensor can be extracted by multiplying with eTM3,k

in the third mode, where eTM3,k
is the k-th row of an M3 ×M3 identity matrix. Applying this

slicing operator to (7.7) yields

D3 ×3 eTM3,k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
diag{[F (3)]

(k,∶)
}
= S[s]3 ×3 eTM3,k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S3,k

×1T −11 ×2 T −12 (7.8)

diag{[F (3)](k,∶)} = T −11 ⋅S3,k ⋅ T −T2 , (7.9)

where k = 1,2, . . . ,M3. The SMD in (7.9) is “asymmetric” in the sense that the matrices T 1

and T 2 are completely different and possess no specific relation. Typically, SMDs are cast

as finding a square invertible matrix M such that M ⋅Xn ⋅M−1 becomes as diagonal as

possible for a set of N given matrices Xn, n = 1,2, . . . ,N . In order to rewrite (7.9) into such a

“symmetric” form, we define two new sets of matrices by multiplying all slices by the inverse
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of one particular slice from the right hand side (rhs) and the left hand side (lhs), respectively1.

Thereby, we obtain

Srhs
3,k = S3,k ⋅S−13,s3 and Slhs

3,k = (S−13,s3 ⋅S3,k)T , (7.10)

where the additional transpose is introduced for symmetry reasons. Here s3 refers to one

arbitrary fixed integer number between 1 and M3; its choice is discussed below. Inserting (7.9)

into (7.10) we obtain

Srhs
3,k = T 1 ⋅ diag {[F (3)](k,∶)} ⋅ TT

2 ⋅ T −T2 ⋅ diag {[F (3)](s3,∶)}−1 ⋅ T −11
= T 1 ⋅ diag {[F (3)](k,∶)} ⋅ diag {[F (3)](s3,∶)}−1 ⋅ T −11

⇒ Srhs
3,k = T 1 ⋅ diag{[F̃ (3)](k,∶)} ⋅ T −11 , (7.11)

where F̃
(3)
= F (3) ⋅ diag {[F (3)](s3,∶)}−1. Likewise, for Slhs

3,k we get

Slhs
3,k = T 2 ⋅ diag{[F (3)](k,∶)} ⋅ diag{[F (3)](s3,∶)}

−1 ⋅ T −12
= T 2 ⋅ diag{[F̃ (3)](k,∶)} ⋅ T −12 . (7.12)

Equations (7.11) and (7.12) show that T 1 and T 2 can be found by simultaneous diagonalization

of the matrix slices Srhs
3,k and Slhs

3,k, respectively. This provides us with F (1) and F (2) via the

relation F (r) = U [s]r ⋅ T r. The simultaneous diagonalization of (7.11) and (7.12) can, for

instance, be achieved via the joint diagonalization algorithm proposed in [FG06].

Note that the diagonal elements of the matrices T −11 ⋅ Srhs
3,k ⋅ T 1 as well as T −12 ⋅ Srhs

3,k ⋅ T 2

provide an estimate for the matrix F̃
(3)

, which identifies F (3) up to one scaling ambiguity per

column. This ambiguity is irrelevant since the CP decomposition itself is only unique up to

column permutation and scaling (cf. discussion in Section 6.2).

Consequently, we have one estimate for F (1) and F (3) from the SMD of Srhs
3,k. The missing

F (2) could easily be found via a pseudo inverse2, i.e., F (2) = [X ](2) ⋅ [(F (3) ◇F (1))+]T. Note
that while in the absence of noise this solution is exact, in the presence of noise it represents

a least squares (LS) estimate. Likewise, a second estimate for all three loading matrices is

1A similar technique was used in [AFCC04] for the CP decomposition of a pair-wise symmetric 2q-th order
cumulant tensor.

2For those heuristics that discard SMDs before reconstructing the tensor (e.g., the RES heuristic), we can skip
this step for all discarded SMDs.
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obtained by augmenting the estimate for F (2) and F (3) obtained from Slhs
3,k by a LS fit for

F (1), i.e., F (1) = [X ](1) ⋅ [(F (2) ◇F (3))+]T.
It is possible to construct even more SMDs by considering other mode-combinations. Up

to here we have estimated T 1 and T 2 by diagonalizing three-mode slices. Similarly, we can

estimate T 1 and T 3 by diagonalizing two-mode slices and T 2 and T 3 by diagonalizing one-

mode slices. The corresponding SMDs are given by

Srhs
2,k = S2,k ⋅S−12,s2 = T 1 ⋅ diag{[F̃ (2)](k,∶)} ⋅ T −11 (7.13)

Slhs
2,k = (S−12,s2 ⋅S2,k)T = T 3 ⋅ diag{[F̃ (2)](k,∶)} ⋅ T −13 (7.14)

F̃
(2)
= F (2) ⋅ diag{[F (2)](s2,∶)}

−1

(7.15)

S2,k = [(S[s] ×2 U [s]2 ) ×2 eTM2,k
](1) (7.16)

for T 1 and T 3 and similarly,

Srhs
1,k = S1,k ⋅S−11,s1 = T 2 ⋅ diag{[F̃ (1)](k,∶)} ⋅ T −12 (7.17)

Slhs
1,k = (S−11,s1 ⋅S1,k)T = T 3 ⋅ diag{[F̃ (1)](k,∶)} ⋅ T −13 (7.18)

F̃
(1)
= F (1) ⋅ diag{[F (1)](s1,∶)}

−1

(7.19)

S1,k = [(S[s] ×1 U [s]1 ) ×1 eTM1,k
](2) . (7.20)

for T 2 and T 3, respectively. Note that the unfolding used in the definition of S1,k and S2,k is

introduced to convert the d×1×d tensor and the 1×d×d tensor into d×d matrices. Moreover,

s1 (s2) represents an arbitrary integer number between 1 and M1 (M2).

Overall this shows that we can construct NSMD = 6 SMDs and obtain an estimate of all

three loading matrices from each of them. This provides us with up to six estimates for each

factor matrix F (r). We will refer to the m-th estimate of the r-th factor matrix as F̂
(r)
m .

Note that we have transformed the “asymmetric” SMDs into “symmetric” ones by mul-

tiplying with the inverse of one particular slice sr ∈ {1,2, . . . ,Mr}. While for an exact CP

decomposition the choice of sr is indeed irrelevant, for an approximate CP decomposition a
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meaningful choice is given by

sr = argmin
s=1,2,...,Mr

cond (Sr,s) , r = 1,2,3, (7.21)

i.e., picking the slice with the best (smallest) conditioning number. This process is similar to

the selection of pivots when solving sets of linear equations.

7.1.2. Degeneracy

Up to this point we have assumed that the CP decomposition is non-degenerate in all three

modes, i.e., p1 = p2 = p3 = d so that we can express the r-th loading matrix as F (r) = U [s]r ⋅T r.

We now consider the case that the CP decomposition is degenerate in one mode and non-

degenerate in the remaining two modes.

Without loss of generality let us assume that the first mode is degenerate, i.e., p1 < d, p2 = d,

and p3 = d. Therefore, F (r) = U [s]r ⋅ T r remains valid for r = 2,3. Consequently, we can still

establish the SMDs for Srhs
1,k and Slhs

1,k from which we obtain two estimates for all three loading

matrices, as discussed above. However, since a transform matrix T 1 does not exist anymore

there are no corresponding SMDs for S2,k and for S3,k. This shows that the SECSI framework

still applies with the main difference that the number of SMDs we can establish is reduced

from six to two.

7.1.3. Uniqueness

It is easy to show that the SMD-based approach to compute an approximate CP decomposition

does not introduce any additional ambiguities. Therefore, as long as the tensor has two non-

degenerate modes, SECSI yields estimates for the loading matrices that are unique up to a

scaling and a (consistent) permutation of the columns. This is summarized in the following

Theorem:

Theorem 7.1.1. In the absence of noise, the estimates of the loading matrices from the n-th

SMD satisfy

F̂
(r)
n = F (r) ⋅P n ⋅Dr,n, (7.22)

where P n are a permutation matrices and Dr,n = diag {dr,n} ∈ Cd×d are diagonal matrices with

R∏
r=1

Dr,n = Id. (7.23)
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Proof: cf. Appendix C.1.

Note that this theorem implies that the ambiguities are consistent within one SMD (n) but

they may differ between SMDs. Therefore, when we combine estimates from different SMDs

in order to improve the overall performance, these ambiguities need to be resolved. This is

discussed in Section 7.4.

7.1.4. Symmetry

The model is said to possess a symmetry if two loading matrices are equal, i.e., F (r1) = F (r2)
for r1 ≠ r2 ∈ {1,2,3}. Similarly, we refer to a Hermitian symmetry if one loading matrix is the

complex conjugate of another loading matrix, i.e., F (r1) = F (r2)∗ . In the special case where

all factor matrices are equal, the model is referred to as pair-wise symmetric [dLdMV00b] or

super-symmetric [dL06]. These symmetries are found in different applications. For instance,

a CP decomposition with a Hermitian symmetry between the first and the second mode is

obtained in [vdVP96, RVGS05]3. Moreover, it can be shown that all real-valued cumulant

tensors obey a pair-wise symmetric CP decomposition [Car91]. For complex-valued cumulant

tensors, the loading matrices are equal or conjugates of each other, depending on how we choose

the conjugation operations in the definition of the complex cumulants. Such a tensor still

falls under the definition of pair-wise symmetric tensor given in [dLdMV00b], where arbitrary

conjugations are allowed.

Note that the noise contribution typically obeys the same symmetry due to the processing

applied to the original data. For instance, in [RVGS05], the Hermitian symmetry appears due

to the computation of covariance matrices from the raw data. If this computation is performed

on the noisy observation it induces the same Hermitian symmetry also in the additive noise

component. Similarly, the above-mentioned cumulant tensors are pair-wise symmetric since

the corresponding cumulants themselves possess a permutation symmetry in the indices due

to their construction. This property remains valid also for cumulant tensors estimated from a

finite data set.

If both, the desired signal component as well as the noise contribution possess the same

symmetry, our SECSI framework readily allows to exploit this fact. First of all, we note that the

HOSVD obeys the same symmetry4, i.e., U
[s]
r1 = U

[s]
r2 for symmetric modes (r1, r2) and U [s]r1 =

3Although [vdVP96] is not using tensor notation and hence does not refer to the problem as a CP decomposition,
it is recast as an SMD of the form Y n =W

H ⋅Λn ⋅W , where Λn is diagonal, n = 1,2, . . . ,N . As evident from the
discussion in this section, this is in fact in the same algebraic form as a CP model with a Hermitian symmetry.
Note that [vdVP96] proposes a generalized simultaneous Schur decomposision to solve the approximate SMDs
in the presence of noise.

4The HOSVD obeys the same symmetry provided that we choose the inherent scaling ambiguity of one unknown
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U
[s]∗
r2 for Hermitian symmetric modes (r1, r2). Consequently, the corresponding transform

matrices T r1 and T r2 are identical for symmetric modes and complex conjugates of each other

for Hermitian symmetric modes. Therefore, we can solve the “asymmetric” SMD in (7.9)

directly via diagonalization by congruence. If the first two modes are symmetric, we obtain an

SMD in the form of T 1 ⋅S3,k ⋅TT
1 and in case of a Hermitian symmetry we have T 1 ⋅S3,k ⋅TH

1 .

Both forms of the SMD can for instance be solved by the ACDC algorithm [Yer02] in its

non-Hermitian and its Hermitian version, respectively. For the latter form, many alternative

algorithms exist, e.g., the JTJD algorithm [GZMB10]. Note that in the pair-wise symmetric

case we have S1,k = S2,k = S3,k and hence it is sufficient to solve one of the three possible

SMDs.

Alternatively, we can stick to the diagonalization by similarity transformation obtained by

multiplying with the inverse of a pivot slice, as before. Even in this case, the symmetries can

be exploited in the following ways: (a) For (Hermitian) symmetric modes (r1, r2) the slices

Sr3,k are (Hermitian) symmetric matrices and hence Srhs
r3,k
= (Slhs

r3,k
)T (Srhs

r3,k
= (Slhs

r3,k
)H), it

is therefore sufficient to solve one of these two SMDs; (b) For a pair-wise symmetric tensor

where all loading matrices are equal we have Srhs
1,k = (Slhs

1,k)T = Srhs
2,k = (Slhs

2,k)T = Srhs
3,k = (Slhs

3,k)T,
it is therefore enough to solve any of the six SMDs, since all six are exactly identical.

7.2. R-way CP

7.2.1. R-way extension

In this section we demonstrate how to extend the SECSI framework to the general R-way case

for R ≥ 3. As in the three-way case, we begin with the assumption that the CP decomposition

is non-degenerate in all R modes and discuss the allowed degeneracies at the end of the section.

Moreover, for clarity we assume the noise-free case X = X 0 again. The influence of noise is

discussed at the end of Section 6.2.1 and in Section 7.4. The “economy-size” HOSVD of the

noise-free tensor X satisfies p1 = p2 = . . . = pR = d (which is replaced by the truncated HOSVD

in the noisy case, cf. end of Section 6.2) and reads as

X = S[s] ×1 U [s]1 . . . ×R U [s]R = S[s]
R⨉
r=1

rU
[s]
r , (7.24)

phase term eϕ for each n-mode singular vector such that the symmetries hold.
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where S[s] ∈ Cd×d...×d and U
[s]
r ∈ CMr×d. Again, we notice that the decomposition has a very

similar structure to the R-way CP decomposition which is given by

X = IR,d ×1 F (1) . . . ×R F (R) = IR,d

R⨉
r=1

rF
(r). (7.25)

By expressing the r-mode unfolding of X in terms of (7.24) and (7.25) we find that F (r)
and U

[s]
r span the same column space. Thus, there exists a non-singular transform matrix

T r ∈ Cd×d such that F (r) = U [s]r ⋅T r. Inserting this relation into (7.24) and (7.25) we find that

the fundamental link between the R-way HOSVD and the R-way CP decomposition is given

by

S[s] = IR,d ×1 T 1 . . . ×R TR (7.26)

IR,d = S
[s] ×1 T −11 . . . ×R T −1R . (7.27)

Therefore, we can interpret the transform matrices T r as the loading matrices of the CP

decomposition of the core tensor (7.26) or equivalently as the matrices T −1r that diagonalize

the core tensor (7.27).

As in the three-way case, we estimate the transform matrices via joint diagonalizations of a

set of matrices. Again, instead of solving only one SMD we use the R-D structure to construct

multiple SMDs and solve all of them, thus obtaining multiple estimates of all factors. We then

pick the final solution in a subsequent step.

In [RH08a], we have presented this extension by operating on the slices of suitably con-

structed R-way tensors. Here we show a simpler, albeit algebraically equivalent, explanation

of the R-way extension. To this end, define the tensors X (k,ℓ) for k, ℓ = 1,2, . . . ,R, k < ℓ of size

Mk ×Mℓ ×M/(Mk ⋅Mℓ), where M = ∏R
r=1Mr. The tensor X (k,ℓ) contains the same elements

as X rearranged such that the k-th index appears in the first dimension, the ℓ-th index in

the second dimension, and all other indices are stacked along the third dimension with indices

arranged in increasing order. Consequently, if n is the third index of X (k,ℓ), it is related to

the indices ir = 1,2, . . .Mr, r = 1,2, . . . ,R, r ≠ k, ℓ connected to X in the following manner

n = i1 + (i2 − 1) ⋅M1 + . . . + (ik−1 − 1) ⋅ k−1∏
r=1

Mr + . . . + (ik+1 − 1) ⋅ k+1∏
r=1
r≠k

Mr + . . .

+ (iℓ−1 − 1) ⋅ ℓ−1∏
r=1
r≠k

Mr + . . . + (iℓ+1 − 1) ⋅ ℓ+1∏
r=1

r≠k,ℓ

Mr + (iR − 1) ⋅ R∏
r=1

r≠k,ℓ

Mr (7.28)
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for n = 1,2, . . . ,M/(Mk ⋅Mℓ). Since X (k,ℓ) is a rearranged version of X it can still be expressed

as a sum of d rank-one tensors. Therefore, it obeys a rank-d CP decomposition given by

X (k,ℓ) = IR,d ×1 F (k) ×2 F (ℓ) ×3 F (k,ℓ), (7.29)

where F (k,ℓ) ∈ CM/(Mk ⋅Mℓ)×d is given by

F (k,ℓ) = F (R) ◇F (R−1) ◇ . . . ◇F (ℓ+1) ◇F (ℓ−1) ◇ . . . ◇F (k+1) ◇F (k−1) ◇ . . . ◇F (1). (7.30)

Since X (k,ℓ) obeys a three-way CP decomposition, the transform matrices T k and T ℓ can be

estimated by diagonalization of the three-mode slices of X (k,ℓ), as described in the previous

section. As before, the “asymmetric” SMDs are converted into diagonalization by similarity

transformation via the multiplication with the inverse of a pivot slice from the right hand side

(rhs) or the left hand side (lhs), giving rise to two SMDs. We obtain one estimate for T k from

the SMD rhs, one estimate for T ℓ from the SMD lhs and one estimate for F̃
(k,ℓ)

from both

rhs and lhs. In order to obtain estimates for all loading matrices we need to “invert” (7.30),

i.e., find the loading matrices F (r), r = 1,2, . . . ,R, r ≠ k, ℓ that satisfy (7.30). In the presence

of noise, where (7.30) holds only approximately, this is achieved approximately via what we

refer to as Least Squares Khatri-Rao Factorization. Such a factorization can be achieved

algebraically, i.e., only with the help of (Higher Order) SVDs, as we show in the following.

To this end, let f
(k,ℓ)
n be the n-th column of F (k,ℓ) for n = 1,2, . . . , d. Since F (k,ℓ) contains

a column-wise Kronecker product, f
(k,ℓ)
n is the Kronecker product between the n-th columns

of the loading matrices F (r), r = 1,2, . . . ,R, r ≠ k, ℓ. Rearranging this vector into an (R − 2)-
dimensional tensor F

(k,ℓ)
n yields the rank-one tensor

F(k,ℓ)n = f (R)n ○ f (R−1)n . . . ○ f (ℓ+1)n ○ f (ℓ−1)n f (k+1)n ○ f (k−1)n . . . ○ f (2)n ○ f (1)n . (7.31)

In the presence of noise, this relation holds only approximately. Consequently, estimating the

n-th column of the loading matrices is achieved by determining a rank-one approximation

of the tensor F
(k,ℓ)
n . While the optimal rank-one approximation requires an iterative algo-

rithm [dLdMV00b], the truncated HOSVD already provides an estimate that is sufficiently

accurate for all practical purposes5. By repeating this process for all columns n = 1,2, . . . , d,

we can estimate the loading matrices F (r), r = 1,2, . . . ,R, r ≠ k, ℓ up to one unknown scal-

ing ambiguity per column. These are irrelevant since they are already inherent in the CP

5For R = 4, the tensor F
(k,ℓ)
n has only two dimensions. Therefore, a truncated SVD yields the optimal rank-one

approximation in the Frobenius-norm sense.
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decomposition itself (cf. discussion in Section 6.2).

As in the three-way case, from both SMDs (rhs, lhs) we have obtained all loading matrices

except for one (F (k) for rhs and F (ℓ) for lhs), which may be estimated via a Least Squares fit

in the very last step6. Consequently, for each (k, ℓ) we obtain two estimates for all loading

matrices F (r), r = 1,2, . . . ,R. In the non-degenerate case, the number of possible combinations

for k and ℓ is equal to R ⋅ (R − 1)/2 which provides us with up to R ⋅ (R − 1) estimates for

all loading matrices in the general R-way case. This shows that with larger R our SECSI

framework generates even more candidate solutions and thus allows even more flexibility in

designing efficient algorithms. Table 7.1 exemplifies the possible SMDs and the corresponding

estimates for the loading matrices in a non-degenerate R = 5-way CP decomposition.

7.2.2. Degeneracies

If the CP decomposition is degenerate in mode r, i.e., pr < d, then the transform matrix T r

does not exist anymore. Consequently, all SMDs (k, ℓ) where either k or ℓ is equal to r cannot

be solved anymore. However, as long as there is at least one combination (k, ℓ) where the

CP decomposition is non-degenerate in both k and ℓ, we can still obtain two estimates for all

loading matrices by solving the two SMDs (rhs, lhs) connected to these modes (k, ℓ). Therefore,
the SECSI framework is applicable if the problem is degenerate in up to R−2 modes, it breaks

down if degeneracies in R − 1 or in all R modes occur.

7.2.3. Symmetries

The comments about symmetric CP decompositions from Section 7.1.4 also generalize to the

R-way case. In particular, in the case of a pair-wise symmetric tensor where all R loading

matrices are equal, all R ⋅ (R − 1) SMDs are identical and therefore it is sufficient to solve

exactly one of them.

7.3. Special cases

In this section we discuss the two special cases of a “two-slab” and a two-component CP.

Here, “two-slab” refers to the case that the tensor consists of only two slices, i.e., its size is

equal to two in one of its modes. It is known that in these cases a direct algebraic solution is

possible. As we show, our semi-algebraic framework naturally reduces to these known algebraic

6As in the three-way case, this step can be skipped for SMDs that are discarded by a an appropriate heuristic,
e.g., RES.
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(k, ℓ) r/l F (1) F (2) F (3) F (4) F (5)
(1,2) rhs T L D D D(1,2) lhs L T D D D(1,3) rhs T D L D D(1,3) lhs L D T D D(1,4) rhs T D D L D(1,4) lhs L D D T D(1,5) rhs T D D D L(1,5) lhs L D D D T(2,3) rhs D T L D D(2,3) lhs D L T D D(2,4) rhs D T D L D(2,4) lhs D L D T D(2,5) rhs D T D D L(2,5) lhs D L D D T(3,4) rhs D D T L D(3,4) lhs D D L T D(3,5) rhs D D T D L(3,5) lhs D D L D T(4,5) rhs D D D T L(4,5) lhs D D D L T

Table 7.1.: Possible SMDs for a non-degenerate R = 5-way CP showing which factors are

estimates from the transform matrices T r (“T”), from the diagonalized matrices via F (k,ℓ)
(“D”), and via the LS fit (“L”). The column “r/l” refers to the two SMDs rhs, lhs that can
be constructed for each combination of modes, cf. (7.10).
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solutions, i.e., there is no need to solve any SMD. Since the general R-way case can always be

reduced to a 3-way tensor (as shown in Section 7.2), we only consider the 3-way case.

7.3.1. Two slabs

First of all, consider the case where the tensor has size two in one mode, i.e., X is of size

M1×M2×2, without loss of generality. In other words, X consists of two three-mode matrices

X1,X2 ∈ CM1×M2 , such that X = [X1 3X2]. If we estimate the CP via joint diagonalization

of both three-mode slices we need d ≤ min(M1,M2) but d may be larger than two. The two

three-mode slices of X satisfy

X1 = F (1) ⋅ diag{[F (3)](1,∶)} ⋅F (2)T (7.32)

X2 = F (1) ⋅ diag{[F (3)](2,∶)} ⋅F (2)T . (7.33)

The three-mode slices S3,k are formed by multiplyingX withU
[s]H
r from the truncated HOSVD

in the first (r = 1) and the second mode (r = 2) which gives

S3,1 = U
[s]H
1 ⋅X1 ⋅U [s]∗2 = T 1 ⋅ diag{[F (3)](1,∶)} ⋅ TT

2 (7.34)

S3,2 = U
[s]H
1 ⋅X2 ⋅U [s]∗2 = T 1 ⋅ diag{[F (3)](2,∶)} ⋅ TT

2 . (7.35)

Therefore, for Srhs
3,k and Slhs

3,k we only have one slice which yields

Srhs
3,1 = T 1 ⋅ diag{[F (3)](1,∶)} ⋅ diag{[F (3)](2,∶)}

−1 ⋅ T −11
Slhs

3,1 = T 2 ⋅ diag{[F (3)](2,∶)} ⋅ diag{[F (3)](1,∶)}
−1 ⋅ T −12 .

This shows that T 1 and T 2 can be directly estimated as the matrix of eigenvectors of Srhs
3,k

and Slhs
3,k, respectively. Albeit computed in a slightly different manner, this procedure is

algebraically equivalent to the Direct Trilinear Decomposition (DTLD) which was proposed

in [SK90]. The main difference is that DTLD was devised for three-way tensors of an arbitrary

size. The reduction to two slabs is achieved by performing a three-mode projection onto

the dominant two three-mode singular vectors. Since for two slabs U
[s]
3 is of size 2 × 2, this

projection has no impact on the estimation accuracy of the CP model.

Overall, this shows that the SECSI framework presented in this chapter and reduces to the
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known algebraic DTLD approach for the special case of two slabs. Hence, there is no need to

solve any SMDs in this case.

7.3.2. Two components

In this subsection we discuss the special case where the rank of the tensor X 0 is equal to

two, i.e., the CP model contains the sum of d = 2 rank-one components. Moreover, the size

of the tensor is arbitrary, i.e., X ∈ CM1×M2×M3 . Note that in this case, the CP can never

be degenerate, since rank-one loading matrices are not allowed in Kruskal’s identifiability

condition [Kru77]. Consider the noise-free case first. We have

X 0 = I3,2 ×1 F (1) ×2 F (2) ×3 F (3) (7.36)

= S[s] ×1 U [s]1 ×2 U [s]2 ×3 U [s]3 , (7.37)

where F (r) and U [s]r are of size Mr×2 and we have F (r) = U [s]r ⋅T r for r = 1,2,3. Consequently,

the CP of S[s] ∈ C2×2×2 can be expressed as

S[s] = I3,2 ×1 T 1 ×2 T 2 ×3 T 3, (7.38)

where T r ∈ C2×2 for r = 1,2,3. However, this is a CP with two slabs so the direct solution dis-

cussed in Section 7.3.1 applies. Since S[s] is also of size two in the first and the second mode it

is even simpler: another Tucker compression step in the first two modes is not needed. Instead

we can directly compute the eigenvectors of S1 ⋅ S−12 which yields T 1 and the eigenvectors of(S−11 ⋅S2)T which yields T 2, if S1 and S2 are the two three-mode slabs of S[s].
However, there is a catch when the process is applied to noisy data. When the tensor is

real-valued, S[s] is also real-valued, but S1 ⋅S−12 may have complex eigenvectors. This happens

when trace{S1 ⋅S−12 }2 < 4 ⋅ det{S1 ⋅S−12 }. The interpretation of this scenario is that the core

tensor S[s] has rank three over R, which may happen due to the noise influence. Note that a

2× 2× 2 tensor has generic rank7 two over C but no generic rank over R, since it possesses the

two typical ranks two and three. This was already observed in [Ten91]. Additionally, the proof

presented in [Ten91] closely resembles the method for computing the CP of the core tensor

that is discussed in this section.

For the estimation of the CP model this implies that in the real-valued case, there are

7The typical rank is defined as any tensor rank that occurs with non-zero probability for tensors drawn from a
continuous distribution. For tensors which have only one typical rank, this rank is called generic [CtBdLC09].
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scenarios where this direct fit fails to provide a real-valued model. However, this only happens

when the noise contribution is so strong that it dominates at least one of the two components.

Consequently, this can be seen as a reliability test. If the two slabs of the core tensor satisfy

the condition trace{S1 ⋅S−12 }2 < 4 ⋅ det{S1 ⋅S−12 } the reliability test has failed and we know

that a rank-two model cannot be fitted reliably. As we show in the simulations, this direct fit

performs just equally well as an ALS-based PARAFAC while being completely non-iterative.

What does this mean for the SMDs constructed via our SECSI framework? It is easy to

show that as long as the core tensor is rank-two, the direct fit presented above represents an

exact solution to all SMDs. Therefore, there is no need to compute any of the SMDs, since

they converge to the same solution that can be directly obtained via the direct fit above.

In summary, this shows that for two components, iterative procedures are never required

and our SECSI framework reduces to the direct fitting algorithm that was explained as part

of the constructive proof in [Ten91].

7.4. Heuristics

In the previous sections we have demonstrated how the CP model can be reformulated into

Simultaneous Matrix Decompositions. We have exploited the structure to obtain multiple

estimates for the loading matrices F (r), r = 1,2, . . . ,R. While in the noise-free case, each

SMD yields the exact loading matrices (up to permutation and scaling), in the presence of

noise, the estimates can be different. This allows us to select one of these estimates for each

loading matrix that we consider to be the best choice. We therefore need to devise methods

to select which of the candidate solutions to output as the final estimate. With the help of

these selection criteria, different algorithms to solve the approximate CP decomposition can

be defined within the SECSI framework presented in this chapter. If a very fast algorithm is

needed we can choose to solve only one SMD which provides already a full estimate of the

model. However, if the accuracy of the solution is critical, all SMDs can be solved and an

exhaustive best matching scheme can be used to minimize the reconstruction error.

To this end, let F̂
(r)
n be the estimate of F (r) from the n-th SMD, where n = 1,2, . . . ,NSMD.

The overall number of SMDs that are solved is denoted by NSMD. If the CP decomposition

is completely non-degenerate, we can choose to solve between 1 and R ⋅ (R − 1) SMDs, i.e.,

1 ≤ NSMD ≤ R(R−1). If degeneracies occur, the maximum is lower, for a maximally degenerate

problem we have 1 ≤ NSMD ≤ 2 (cf. discussions in Sections 7.1.2 and 7.2.2).

In principle, it is possible to combine estimates from different SMDs, say, pick F̂
(1)

and

F̂
(3)

from the first SMD and F̂
(2)

from the second. However, in this case, special attention
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must be paid to the scaling and permutation ambiguities mentioned in Section 6.2. Within

one SMD these indeterminacies are “consistent”, meaning they have no impact on the recon-

structed tensor X̂ . However, combining estimates from different SMDs can lead to inconsistent

permutation and scaling, which results in an invalid model. Therefore, these ambiguities must

be resolved first. A simple approach is to normalize all estimates of all factors such that each

column has norm one and to estimate the corresponding amplitudes via another Least Squares

fit, i.e.,8

γ = (F̄ (R) ◇ F̄ (R−1) . . . ◇ F̄ (1))+ ⋅ vec{X} , (7.39)

where F̄
(r)

represents the normalized loading matrix in the r-th mode. These amplitudes

γi, i = 1,2, . . . , d have been introduced under the name “Least Squares PARAFAC amplitudes”

in [WRH+09]. The permutation ambiguity is then solved by permuting the columns of every

estimate F̂
(r)
n such that the magnitudes of the amplitudes γi appear in descending order. 9

When reconstructing a tensor by combining estimates from different SMDs we first compute

an LS fit of the corresponding amplitudes γ and then rescale the components accordingly, i.e.,

by placing γi on the main diagonal of the identity tensor or equivalently by scaling the columns

of the loading matrix in one of the R modes by γi.

We use the following measures for building selection criteria:

• Reconstruction error (REC): The reconstruction error is defined as

REC(n1, n2, . . . , nR) =
∥IR,d

R

⨉
r=1

rF̂
(r)
nr
−X∥2

H∥X ∥2H ,

for nr = 1,2, . . . ,NSMD, i.e., the relative error between the tensor reconstructed from the

estimated loading matrices and the observed (noisy) data tensor.

• SMD residuals (RES): The residual after the completion of the n-th SMD measures the

“diagonality” of the slices after joint diagonalization. Let Sn,k be the input slices to the

n-th SMD, where k = 1,2, . . . ,Nslices and let T be the resulting diagonalizer, such that

8Obviously, this step is not needed for estimates originating from the same SMD since in this case, the last
loading matrix is estimated via LS, which already includes this LS fit for the amplitudes. Therefore, we only
use it when combining estimates from different SMDs.

9Alternatively, the permutation ambiguity can be resolved by comparing the angles between the columns of

F̂
(r)

n and F̂
(r)

1 . At each step the two columns with the closest match are associated and then removed from
the set of remaining columns. However, we found the approach based on (7.39) to be more reliable in our
numerical experiments.
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T −1 ⋅Sn,k ⋅ T is approximately diagonal for all k. Then, the residual is defined as

RES(n) = 1

Nslices

Nslices

∑
k=1

∥off {T −1 ⋅Sn,k ⋅ T }∥2F , (7.40)

where off {⋅} is a function that extracts all off-diagonal elements, i.e., off {X} =X−(X⊙
Id) for X ∈ Cd×d.

• Condition (CON): This measure evaluates how well-conditioned the SMDs connected

to the modes (k, ℓ) are by storing the best conditioning number among the slices that

was found when selecting the pivot slice. Consequently, if S
(k,ℓ)
i represent the slices

from which the SMDs connected to modes k and ℓ are constructed, the corresponding

conditioning measure is defined as

CON(k, ℓ) = min
i=1,2,...,Nslices

cond{S(k,ℓ)i }, 1 ≤ k < ℓ ≤ R. (7.41)

It is expected that an SMD where all slices are badly conditioned (and hence CON(k, ℓ)
is large) is more difficult to solve and hence more sensitive to additive noise compared

to an SMD with well conditioned slices. Therefore, while RES and REC only allow to

assess the quality of the estimates after the SMD was computed, CON can be used to

select/discard SMDs prior to computing them.

In fact, it can be shown that a bad conditioning of the r-th loading matrix F (r) leads to
badly conditioned matrix slices for all (k, ℓ) where either k = r or ℓ = r. Consequently, if

the model has up to R− 2 badly conditioned and two well-conditioned loading matrices,

choosing the latter two modes as k and ℓ yields well-conditioned matrix slices for the

SMD which promises faster convergence and hence a better estimate.

Various combinations of the above criteria as well as other measures are possible to devise

specific algorithms for the computation of an approximate CP decomposition within our SECSI

framework. Depending on the allowed computational complexity we can choose to solve only

one or many SMDs and then select the final estimate for the loading matrices according to

different criteria. The specific algorithms we propose are the following:

• BM (Best Matching): Solve all possible SMDs (up to R ⋅(R−1) if no degeneracies occur)

and select the final solution following the REC-criterion, testing all possible combinations

in an exhaustive search. In other words, the final loading matrices are given by F̂
(r)
ir ,
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r = 1,2, . . . ,R, where

(i1, i2, . . . , iR) = argmin
n1,n2,...,nR

REC(n1, n2, . . . , nR). (7.42)

This algorithm provides the minimum possible reconstruction error in our SECSI frame-

work. However, its complexity is comparably high. Since different SMDs are combined,

we have to resolve scaling and permutation ambiguities (as discussed above). Moreover,

the exhaustive search requires to reconstruct (R ⋅ (R− 1))R combinations of loading ma-

trices, which grows rapidly with R (729 for R = 3, 20 736 for R = 4, and already 3.2

million for R = 5). In any case, BM can serve as a reference to determine the achievable

reconstruction error in the SECSI framework in order to benchmark different heuristics.

• REC PS: Similarly to BM, the REC criterion is used with the difference that only

solutions originating from the same SMD are combined, hence PS (“paired solutions”).

The final estimates are given by F̂
(r)
i , r = 1,2, . . . ,R, where

i = argmin
n

REC(n,n, . . . , n). (7.43)

This is a much more practical algorithm since its complexity is significantly lower. There

is no need to resolve permutation and scaling ambiguities between estimates and we only

have to reconstruct NSMD ≤ R ⋅ (R − 1) tensors.
• RES: This algorithm also solves all SMDs and then selects the final estimates from the

SMD which minimizes the RES criterion, i.e., the smallest residuals after the diagonal-

ization of the corresponding matrix slices are chosen. In this method there is no need to

compute a reconstructed tensor, which is advantageous if the dimensions of the tensor

are very large.

• CON PS: In this algorithm we solve only the two SMDs which correspond to the lowest

value in the CON-criterion. Afterwards, the two solutions are compared in terms of their

reconstruction error and the one which yields the lower reconstruction error is returned

as the final solution. No mutual combinations between the estimates from the two SMDs

are considered (PS = “paired solutions”).

This algorithm has a very low complexity since only two SMDs are solved and only two

tensor reconstructions are computed.

It should be emphasized again that these choices only represent examples of algorithms that

can be devised within the SECSI framework presented in this chapter. The generic way in
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which it is formulated allows to control the trade-off between performance and complexity.

Furthermore, for a specific application at hand, an algorithm can be customized to the specific

requirements of the given scenario.

7.5. Simulation results

In this section we present numerical simulation results to demonstrate the accuracy and the

computational complexity of our SECSI framework. If not stated otherwise, the loading ma-

trices for the CP decomposition are drawn from a N(0,1) standard Gaussian distribution for

the real-valued case and a CN(0,1) complex Gaussian distribution for the complex-valued

case. The observed tensor X is generated according to (6.1), i.e., by adding a noise tensor N

which contains zero mean i.i.d. circularly symmetric complex Gaussian random variables with

identical variance σ2
n. The SNR is then defined as SNR = σ−2n .

We evaluate the accuracy of an estimated CP model F̂ 1, F̂ 2, . . . , F̂R with two different

measures, the relative Mean Square Reconstruction Error (MSRE) and the relative Total

Mean Squared Factor Error (TMSFE). The MSRE is defined as

MSRE = E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥X̂ −X ∥2

H∥X ∥2H
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (7.44)

where the reconstructed tensor X̂ is given by X̂ = IR,d

R

⨉
r=1

rF̂
(r)

. It models how well the

estimated CP model can approximate the observed noisy tensor. On the other hand, the

TMSFE is defined via

TMSFE = E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R

∑
r=1

min
P r∈MPD(d)

∥F̂ (r) ⋅P r −F (r)∥2
F∥F (r)∥2

F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (7.45)

whereMPD(d) is the set of d×d permuted diagonal matrices (also called monomial matrices),

i.e., the matrices P r correct the permutation and scaling ambiguity that is inherent in the

estimation of the loading matrices. Consequently, the TMSFE measures how accurately the

actual CP model can be estimated from the noisy observations. Depending on the application

either MSRE or TMSFE may be the more appropriate figure of merit and hence it is instructive

to look at both.

If not stated otherwise we use the algorithm proposed in [FG06] for the diagonalization by
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Scen. Dimension , Rank R/C Correlation SNR Trials (approx.)

I 4 × 7 × 6 , d = 3 R (none) 20 dB 1 500 000
II 4 × 8 × 7 , d = 3 R mode 1 40 dB 850 000
III 4 × 8 × 7 , d = 3 C mode 1 40 dB 550 000
IV 4 × 9 × 6 × 4 , d = 5 C (none) 30 dB 500 000
V 4 × 7 × 15 × 6 , d = 3 C mode 1, 2 35 dB 10 000
VI 80 × 80 × 80 , d = 4 R mode 1 20 dB 5 000

Table 7.2.: Simulation settings for scenarios investigated in Section 7.5.1.

Scen. ALS CPOPT BM REC PS RES CON PS

I 113 ms 217 ms 175 ms 27 ms 25 ms 10 ms
II 284 ms 457 ms 199 ms 40 ms 38 ms 12 ms
III 992 ms N/A 287 ms 89 ms 86 ms 21 ms
IV 338 ms N/A 243 ms 200 ms 198 ms 200 ms
V 33.39 s N/A 52.43 s 1.48 s 1.47 s 88 ms
VI 0.51 s 5.02 s 29.50 s 0.59 s 0.52 s 0.29 s

Table 7.3.: Mean run time for different algorithms in all scenarios.

similarity transform.

7.5.1. Three-way and Four-way CP decomposition

In this section we present some results on three- and four-way tensors without any symmetries.

Our goal is to evaluate the achievable accuracy within our SECSI framework and to investi-

gate the accuracy-complexity trade-off of different heuristics, i.e., how much faster are they

compared to the benchmark given by the exhaustive best matching scheme and how much

accuracy is lost. In addition to the heuristics introduced in Section 7.4 we depict a “dummy”

heuristic where only a single SMD is solved (always selecting the first). The comparison to

this dummy heuristic enables us to see how much we gain by a smart selection of appropriate

SMDs. As an additional benchmark we also depict a “genie” heuristic where for each loading

matrix the best estimate is selected from all candidate solutions. This guarantees the lowest

possible TMSFE inside the SECSI framework (but not necessarily the lowest possible MSRE).

To get further insight into these aspects under various settings we consider six different

scenarios. The corresponding simulation settings are listed in Table 7.2. Figures 7.2-7.8 depict

the complementary cumulative density function (CCDF) of either MSRE or TMSFE for each
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Figure 7.2.: CCDF of the MSRE for Scenario I.
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Figure 7.3.: CCDF of the TMSFE for Scenario II.
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Figure 7.4.: CCDF of the TMSFE for Scenario III.
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single ALS iteration starting with the SECSI solutions.
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Figure 7.6.: CCDF of the TMSFE for Scenario V.
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Figure 7.7.: CCDF of the run times for Scenario V.
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Figure 7.8.: CCDF of the TMSFE for Scenario VI.

scenario and Table 7.3 shows the average run time of the algorithms10.

In the first scenario we investigate a real-valued CP decomposition with randomly drawn

loading matrices. The corresponding CCDF of the MSRE is shown in Figure 7.2. We compare

the four algorithms introduced in Section 7.4 with the ALS-PARAFAC algorithm from the N -

way toolbox [AB00] (which contains the enhanced line search procedure)11 and the CPOPT

algorithm from the MATLAB Tensor Toolbox [ADK11]. We observe that in such a case,

ALS-PARAFAC performs best and the SECSI algorithms BM and REC PS are very close.

Moreover, while BM is slower, REC PS is already faster than ALS-PARAFAC (cf. Table 7.3).

The even faster algorithms RES and CON PS perform a bit worse, albeit still comparable to

the CPOPT algorithm. Furthermore, all heuristics outperform the “dummy” heuristic where

only a single SMD is solved quite significantly. Essentially this shows the “diversity advantage”

which is obtained if we select the final estimate among several candidate solutions. Note that

the genie heuristic does not provide the lowest MSRE since it selects the estimates according

to the estimation errors for the individual loading matrices which does not guarantee a low

MSRE.

10Run times have been evaluated on an Intel X 5550 2.67 GHz machine running Linux (Red Hat 3.4.6-9, Kernel
version 2.6.9-67.0.4.ELsmp) and MATLAB R2012a (7.14.0.739) 64-bit. While absolute numbers will vary
greatly from machine to machine, the relative comparison should remain about the same.

11 Concerning the stopping criteria and the initializations, the default setting of the public version of the N -way
toolbox are used.
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For the second scenario we modify the previous experiment by choosing the loading matrix

in the first mode according to

F (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 1.00 1.00

1.00 0.95 0.95

1.00 0.95 1.00

1.00 1.00 0.95

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.46)

whereas F (2) and F (3) are chosen randomly. Since cond(F (1)) ≈ 116, the tensor is badly

conditioned in the first mode but well-conditioned in the second and the third mode. Such

scenarios, often referred to as bottlenecks [CLdA09], are a severe challenge to ALS-based

algorithms since the correlation may stall the convergence of the ALS iterations. Moreover,

as highlighted earlier, in such a case the SMDs that involve T 1 (i.e., the joint diagonalization

of two- and three-mode slices) are badly conditioned, however, the SMD obtained from the

diagonalization of one-mode slices is unaffected. This situation is automatically detected by

the CON heuristic so that we expect it to perform well in this scenario. Figure 7.3 shows

the TMSFE for this scenario. We observe that while the ALS-PARAFAC algorithm yields

a lower TMSFE in some cases, it has outliers with a much higher TMSFE. The algorithms

within our SECSI framework are more robust compared to ALS in the sense that the variation

of the TMSFE is much lower and no outliers are observed. They are rather close to each

other: BM performs best, closely followed by the heuristics REC PS, then CON PS, then

RES, and finally the dummy heuristic. However, the difference between the TMSFEs is only

about 0.5 dB with an improvement compared to the dummy heuristic of about 1 dB. The

TMSFE of the genie heuristic is almost 3 dB lower than BM (and always better than ALS-

PARAFAC), suggesting that there is still room for improvement for finding better heuristics.

Considering the corresponding run time of the algorithms we observe that CON PS is around

25 times faster than the ALS-based PARAFAC. Consequently, the CON PS heuristic yields

an algorithm that is very fast, reliable, and yet quite accurate in this scenario.

Scenario III is similar to II except that we now consider a complex-valued CP decompo-

sition where F (2), F (3), and the additive noise are drawn from a complex Gaussian distri-

bution. For F (1) we still use (7.46). The CCDF of the TMSFE is depicted in Figure 7.4.

This time, we compare our SECSI solutions with the complex-valued ALS-based COMFAC

algorithm [BSG99] (note that CPOPT is limited to real-valued data only). As before we find

that the ALS-based algorithm is often slightly more accurate, however, it shows outliers with a

very large error, which does not occur for our SECSI algorithms. The four algorithms perform

almost equally well, in the same order as before (BM, REC PS, CON PS, RES) and with only
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0.2 dB difference, outperforming the dummy heuristic by about 1.5 dB. The gap to the genie

heuristic is around 2 dB in this case. Also, it always outperforms ALS-PARAFAC. Considering

the run-time we find again a very significant improvement by a factor of almost 50 comparing

COMFAC to the fastest SECSI algorithm CON PS.

In Scenario IV we consider a four-way tensor that is degenerate in two modes. This implies

that only the two SMDs can be solved which stem from the diagonalization of the three-mode

slices of X (2,3) and all four SECSI algorithms solve both of them. Therefore, two estimates

for each loading matrix are available. In this case, for the selection of the final estimates, the

BM algorithm tests all 24 = 16 combinations, the REC PS as well as the CON PS algorithm

consider only two, and the RES criterion considers only one. This explains the difference in

MSRE between the four algorithms, which is depicted in Figure 7.5. In this case, we use

a simple multi-linear ALS implementation (M-ALS) without line search since the existing

schemes are not applicable to this scenario (ALS-COMFAC is limited to R = 3 whereas the

ALS-PARAFAC is limited to real-valued data). We initialize M-ALS randomly and allow

for a maximum of 10 000 iterations. The algorithm is terminated when the innovation in one

iteration drops below δ = 10−8, where the innovation is defined as ∑R
r=1 ∥F̂ (r)k −F̂ (r)k−1∥2F/∥F̂ (r)k ∥2F.

Here F̂
(r)
k refers to the estimate of the r-th loading matrix in the k-th iteration.

As before, we find infrequent outliers for M-ALS and a more accurate estimate in all other

cases, however, the difference is more severe. Therefore, we depict another set of dashed curves

where we use our SECSI algorithms as a starting point and then run a single ALS sweep for

refinement. The resulting TMSFE is very close to the performance of the M-ALS scheme and

yet does not show any outliers. In terms of the run-time, Table 7.3 shows that the SECSI

solutions are faster than M-ALS by 30-40 %. This is still true if a single ALS refinement step

is carried out since this step adds only around 4 ms of run time.

In Scenario V we consider a non-degenerate complex-valued four-way tensor with badly

conditioned loading matrices in the first and the second mode. Random loading matrices

with bad conditioning are generated according to F cor = Fwhite ⋅R(ρ), where Fwhite contains

i.i.d. elements and R(ρ) is a fixed matrix given by

R(ρ) = (1 − ρ) ⋅ Id + ρ

d
⋅ 1d×d. (7.47)

For Scenario V we choose ρ = 0.98 so that cond(R) = 50. Figure 7.6 depicts the CCDF of the

TMSFE for this scenario and Figure 7.7 shows the CCDF of the run-times. We observe that

the outlier probability for M-ALS is very high and the SECSI algorithms do not produce any

outliers. In terms of estimation accuracy, the BM algorithm performs best, almost achieving
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the optimum genie heuristic. However, since 12 SMDs have to be solved and 124 = 20 736

combinations of estimates have to be computed for the exhaustive search, the computational

complexity is very high, even higher than the ALS procedure. On the other hand, the RES

and the REC PS heuristics are significantly faster than ALS but the TMSFE is higher than for

BM. As before, the CON PS heuristics is the fastest (beating ALS by a factor of 380 in terms

of computation time), however, it is also the least accurate. Yet, CON PS still outperforms the

dummy heuristic quite significantly. This simulation shows that our SECSI framework allows

to adjust the trade-off between accuracy and computational complexity.

Finally, for Scenario VI, we have a large real-valued tensor of size 80 × 80 × 80 with a badly

conditioned loading matrix in the first mode, which is randomly drawn like in Scenario V.

Figure 7.8 shows the CCDF of the TMSFE. We observe that all SECSI heuristics outperform

the ALS-based PARAFAC from the N -way toolbox. As before, BM performs best, however,

its complexity is high since the large tensor has to be reconstructed many times. The REC PS

heuristic performs almost as well at a significantly reduced computation time, comparable

to ALS-PARAFAC. The fastest heuristic CON PS performs slightly worse than the others.

However, its TMSFE is still better than ALS-PARAFAC, in particular with respect to the

outliers. Note that compared to the optimal choice of factors given by the genie heuristic,

the TMSFE of BM and REC PS are only 1 dB and 2 dB higher, respectively.

The following statements summarize our observations from simulations conducted under

various conditions:

• For well-conditioned factor matrices, all SMDs perform equally well, especially ifMr ≫ d.

Therefore, it is typically sufficient to solve one SMD without incurring a significant loss

compared to ALS.

• In a strongly correlated case, heuristics help to detect the “correct” SMD to solve and

CON PS provides a fast and yet reliable algorithm. Moreover, in such a case ALS tends

to produce severe outliers which does not happen for the SECSI schemes.

• In an underdetermined case, the number of SMDs that can be solved is lower and hence

it becomes more attractive to solve all of them. REC PS or even BM are attractive

solutions here. Also, for large values of d and in an underdetermined case, a single ALS

iteration helps to improve the accuracy to the level achieved by ALS (in the cases where

ALS converges). For small values of d (i.e., for Mr ≫ d), this single ALS step has not

shown any significant improvements.

• In R ≥ 4-way problems, BM becomes computationally very complex and therefore, the

82



7.5. Simulation results

−10 −5 0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

SNR [dB]

T
M

S
F

E

 

 

ALS−PARAFAC
Direct Fit trnc HOSVD
Direct Fit HOOI

Figure 7.9.: TMSFE vs. SNR for a real-valued 4 × 7 × 6 tensor and d = 2.

gain in terms of computation time that is achieved via heuristics is very attractive. Here,

RES and CON PS have proven to provide a good complexity/performance trade-off.

7.5.2. Two-component CP decomposition

This section demonstrates numerical results on the direct fitting algorithm for the special

case of two components (d = 2) which is discussed in Section 7.3.2. We consider a real-valued

4×7×6 tensor with randomly drawn loading matrices and estimate the CP model from the noisy

observations via three different methods: (a) the direct fitting algorithm from Section 7.3.2,

based on the truncated HOSVD of X ; (b) the same algorithm based on the optimal rank-

(2,2,2) approximation found via the HOOI algorithm12 applied to X ; (c) the ALS-PARAFAC

algorithm from the N-way toolbox applied to X .

Figure 7.9 shows the TMSFE vs. the SNR. We observe that the direct fitting based on the

HOOI algorithm yields the same TMSFE as the ALS-PARAFAC procedure. Moreover, the

direct fitting based on the truncated HOSVD results in a TMSFE that is only insignificantly

higher. The corresponding MSRE is depicted in Figure 7.10 where the difference between

truncated HOSVD and HOOI is even smaller. Considering the average run-time of the algo-

rithms we find 31 ms for ALS-PARAFAC, 22 ms for the direct fitting based on the HOOI and

12A MATLAB implementation of the HOOI algorithm was kindly provided to us by L. de Lathauwer.
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Figure 7.10.: MSRE vs. SNR for a real-valued 4 × 7 × 6 tensor and d = 2.

only 1.5 ms for the direct fitting based on the truncated HOSVD, which is more than 20 times

faster than ALS-PARAFAC.

7.6. Summary and Conclusions

In this chapter, we have discussed a framework for the SEmi-algebraic computation of approx-

imate CP decompositions via SImultaneous Matrix Diagonalizations (SECSI).

In contrast to previous approaches that have already pointed out the link between CP

decompositions and Simultaneous Matrix Decompositions (SMDs), we have shown that the

symmetry of the problem allows to construct several SMDs instead of only one. This enables us

to obtain multiple estimates for the CP model, and, therefore, we can select a final solution in a

subsequent step. The selection of the final estimates as well as the choice which SMDs to solve

are design parameters that allow to create different algorithms within the SECSI framework.

Overall this creates the flexibility to adapt to specific scenarios and to different demands in

terms of accuracy and computational complexity. We have proposed a number of heuristics

and have evaluated them via numerical computer simulations demonstrating the enhanced

reliability as well as the flexibility in controlling the performance-complexity trade-off.

Moreover, we have extended the SECSI framework to the general multi-way case and have

demonstrated that symmetries in the CP can readily be exploited. Finally, in the special cases
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of a two-slab or a two-component CP decomposition, the SECSI framework reduces to known

fully algebraic solution without the necessity to compute any SMD.
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8. Summary of efficient tensor decompositions

8.1. Summary of own contributions

In this part of the thesis, we have discussed a framework for the semi-algebraic computation

of approximate CP decompositions via Simultaneous Matrix Diagonalizations (SECSI) first

proposed by us for the three-way case in [RH08b] and for the general R-way case in [RH08a].

While the fundamental idea to compute a CP decomposition via SMDs has been proposed

before [vdVP96, dL04a], we have extended the concept in many ways.

The main novel contributions are:

• Demonstrating that not only one, but many SMDs can be constructed due to the sym-

metry of the problem. In fact, we have established the full set of possible SMDs for the

3-D and the general R-D cases. In the non-degenerate case, up to (R − 1) ⋅R SMDs can

be constructed.

• Showing that from each SMD, estimates for all loading matrices can be obtained. This

provides us with several candidate solutions from which we can select one final estimate

in a subsequent step.

• Depending on how many SMDs we choose to solve, how we select them, and how we find

the final estimate for the loading matrices, many different algorithms inside the SECSI

framework can be defined, which achieve different complexity accuracy trade-off points.

A major contribution here is to propose several selection criteria for which SMDs to solve

and for finding the final model estimate. As a result, four different algorithms have been

proposed to demonstrate this flexibility with examples. The algorithms are compared in

terms of their accuracy and their complexity (via run times).

• Discussing the special cases of two-slab and two-component CP where SECSI reduces

naturally to known algebraic CP solutions without the need to compute any SMD.

It should be noted that the SECSI framework has already successfully been applied in several

practical applications related to biomedical signal processing. In [JRW+08, WRH+09], it is used

to identify space-time-frequency components in event-related Electroencephalography (EEG)

data. This idea is extended to a temporally resolved component analysis of dynamic EEG

sources in [WJG+10b, WJR+10, WJG+10a]. The analysis is based on PARAFAC2 which can
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be computed via a sequence of CP decompositions, for which the SECSI framework is used.

Finally, in [BCA+10, BCA+12], the SECSI framework is applied to a space–time–wave-vector

tensor obtained by a local spatial 3-D Fourier transform of the EEG measurement data.

The SECSI framework was also applied to model order selection for multidimensional data

[DRWH10] where the fact that multiple estimates of the same model are found in SECSI

was used to build a test for the plausibility of a candidate model order. Moreover, [DSR+10]

discusses SECSI for parameter estimation from multidimensional signals with colored noise

and imperfect antenna arrays. Another application is blind channel estimation for Space-

Time-Coded MIMO systems [RSS+11].

8.2. Outlook and future work

While the SECSI framework offers a lot of flexibility in designing algorithms tailored to the

specific needs of certain applications, it still has a number of shortcomings.

Firstly, it would be desirable to find analytical results for the achievable accuracy of the

SMDs. Ideally, such results could enable us to define the different algorithms in the SECSI

framework based on analytically more profound arguments than the heuristic solutions we have

defined so far. They could even guide us to devise mechanisms for the automatic selection of

a suitable heuristic based on certain properties of the observed data (e.g., size, conditioning).

However, this is a difficult task due to the iterative nature of SMD algorithms [FG06, LA11].

Up to now, no usable performance analysis for SMDs exists (in fact, the same is true for the

iterative ALS-based schemes).

Secondly, the identifiability constraint of requiring two non-degenerate modes seems to be

too harsh. Especially in R-D scenarios for R > 3 the tensor rank can be significantly higher

than the size of the tensor in all modes [KB09]. This constraint could be relaxed by considering

“generalized” unfoldings where several tensor indices are aligned in the rows and the remaining

indices in the columns of the unfolding matrix (as in [LA11]). We have developed an extension

of the SECSI framework to take these generalized unfoldings into account and initial results

on its performance are reported in [RSH12]. As expected, this extended framework outper-

forms SECSI in particular for R > 3. Since the generalized unfoldings offer a vast amount of

options how to arrange the data, the number of potential model estimates becomes very large.

Therefore, designing and evaluating appropriate heuristics for the extended framework is a

challenging task with great potential for additional improvements.

Thirdly, in terms of an efficient practical implementation, the potential to parallelize SECSI

should be investigated. It seems that the idea to compute several candidate solutions for the
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CP model is already tailored to this goal. However, a further parallelization might be needed,

i.e., a parallelized implementation of the SMD algorithms that build the core of the framework.

For many applications, another desirable aspect is an on-line implementation where the current

solution is updated by a new observation without having to recompute the entire model. Note

that adaptive PARAFAC decompositions (not based on SMDs) exist, e.g., [NS09].

Finally, as highlighted in Section 4.3, many other explanatory tensor decomposition have

been found, such as the Block Tensor Decompositions [dL08], the PARALIND decomposition

[BHS05, BHSL09] or the PARAFAC2 decomposition [Har72]. The potential of applying the

spirit of the SECSI framework to any of these tensor decompositions should be evaluated.

88



Part III.

Subspace-Based Parameter Estimation
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This part of the thesis is devoted to multi-dimensional subspace-based high-resolution pa-

rameter estimation. Its main focus is on demonstrating that multi-dimensional signals can be

stored and manipulated in their native multi-dimensional form by virtue of tensor calculus.

Using the concepts of multi-linear algebra and tensor decompositions discussed in Part I of

the thesis, we arrive at a data model that reflects the multi-dimensional structure of the sig-

nals in a natural form. As we show, based on such models, many existing multi-dimensional

subspace-based high-resolution parameter estimation techniques can be significantly improved.

In Chapter 9 we provide a motivation, the tensor-based multi-dimensional data model,

and a review of the state of the art. Chapter 10 is then devoted to the multi-dimensional

subspace estimation, where an enhanced tensor-based subspace estimate is introduced which

can be applied to improve arbitrary multi-dimensional subspace-based parameter estimation

schemes. The subsequent Chapter 11 discusses one specific class of parameter estimation

schemes, namely the family of Estimation of Signal Parameters via Rotational Invariance

Techniques (ESPRIT)-type algorithms. A tensor-based formulation of ESPRIT is shown which

forms the basis for several enhancements of known ESPRIT-type algorithms that are achieved

by exploiting certain patterns in the received data. In Chapter 12 we introduce a framework

for the analytical performance assessment of arbitrary ESPRIT-type algorithms and use it

to assess the enhancements obtained via the modified ESPRIT-type algorithms proposed in

Chapter 11. Finally, Chapter 13 contains a summary of the major achievements and an outlook

to possible future work. To enhance the readability, proofs and derivations have been moved

to Appendix D.



9. Introduction to subspace-based parameter estimation

9.1. Motivation

Multi-dimensional subspace-based high-resolution parameter estimation is a generic task re-

quired for a variety of applications. The general idea is to estimate parameters from a linear

superposition of signals that are separable across R dimensions. A mathematical definition of

this model is given in Section 9.2.

One example for such signals are multi-dimensional harmonics which are sampled on a multi-

dimensional lattice. Here, the goal is to estimate the frequencies of these harmonics in all

dimensions, which is referred to as harmonic retrieval [KAB83, AR88]. The multi-dimensional

harmonic retrieval problem appears in many different application areas. For instance, it is re-

quired to fit the parameters of a double-directional MIMO channel model [ZFDW00, SMB01]

from MIMO channel sounder measurements [ZHM+00]. It has been shown that under ideal-

ized conditions, the channel transfer function corresponding to this model can be described

by a R-D harmonic signal (R = 3 using the spatial dimension at the transmitter, the receiver,

and the frequency dimension [ZHR+04], or even R = 6 using the 2-D aperture domains at the

transmitter and the receiver, the time, and the frequency dimension [RHST01]). A related

application is MIMO Radar [JLL09, NS10]. As shown in [NS10], single-pulse and multi-pulse

bistatic Radar configurations give rise to a 2-D and a 3-D harmonic retrieval problem, respec-

tively. Another application is 2-D nuclear magnetic resonance (NMR) spectroscopy [BL86]

where a molecular system is excited with a 2-D RF pulse sequence and the measured signal

can be modeled as a sum of 2-D (damped) harmonics.

A related example where such signals are present is direction of arrival (DOA) estimation

in antenna array processing applications. It can be shown that sources transmitting to a

two-dimensional antenna array configuration can be resolved in azimuth and elevation if they

are in the far-field of a receiving antenna array [SK93]. Note that the 2-D DOA estimation

task is a special case of 2-D harmonic retrieval only under certain conditions on the antenna

array (see Appendix D.2). Firstly, each element in the array must possess the same complex

beam pattern and secondly, the array manifold must be separable in two spatial dimensions

(e.g., using a uniform rectangular array). Many 2-D DOA estimation algorithms do not rely

on these assumptions. As an example, we have shown how to perform 2-D DOA estimation

for hexagonally shaped arrays via 3-D Unitary ESPRIT in [RH05, RH06]. For non-uniform
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9. Introduction to subspace-based parameter estimation

arrays, array interpolation [FW92], the manifold separation technique [DD94, BRK07], or

Fourier-domain techniques [RG09] have been investigated.

While harmonic retrieval could be achieved via Discrete Fourier Transform (DFT)-based

spectral estimators (namely, the periodogram), the main disadvantage of such an approach

is that the resolution is fundamentally limited by the sample support via the “Rayleigh”

resolution limit: If M uniformly spaced samples of the harmonics are available, two frequencies

that are closer than 2π/M cannot be resolved [Sch91].

High-resolution spectral estimators are able to break the limit by performing a parametric

spectral estimation. Here, parametric refers to assuming a specific model of our data (e.g., a

superposition of harmonics) and only estimating the model parameters (namely, frequencies

and amplitudes) instead of the entire spectrum. Therefore, while the DFT can be applied

to arbitrary signals, parametric spectral estimators can only be applied if we know that our

data follows a specific model. Exploiting this knowledge typically allows us to increase the

resolution tremendously.

High-resolution parameter estimation has been a field of very active research for several

decades and a large family of methods exists. In the light of the scope of this thesis we

are particularly interested in low-complexity algorithms. Therefore, we focus on the class

of subspace-based multi-dimensional parameter estimation schemes schemes, since these are

known for their simplicity.

Existing subspace-based high-resolution parameter estimation schemes can be classified into

three categories according to their numerical procedure:

• extrema-searching techniques, e.g., spectral MUSIC [Sch79], the Rank-Reduction Esti-

mator (RARE) [PGW02] or the weighted subspace fitting approach [VOK91]

• polynomial rooting techniques, e.g., Pisarenko’s harmonic decomposition [Pis73], the Min-

Norm algorithm [KT83], Root-MUSIC [Bar83], Unitary Root-MUSIC [PGH00], root-

RARE [PGW02], the Method of Direction of Arrival Estimation (MODE) [Van02], the

manifold separation technique [DD94, BRK07] or the Fourier domain root-MUSIC [RG09]

• matrix-shifting techniques: State-Space methods [KAB83, RA92], matrix pencil meth-

ods [HS91], Standard ESPRIT [RPK86], optimally weighted ESPRIT [ES94], Multiple

Invariance ESPRIT [SORK92], or Unitary ESPRIT [HN95].

Multi-dimensional parameter estimation problems can be solved by applying the above-

mentioned estimators to each dimension separately. However, the major drawback of this

approach is that the correct pairing of the parameter estimates across the dimensions has
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to be found in a subsequent step (see, for instance, [RZZ93]). Moreover, by exploiting the

R-D structure via a joint processing over all dimensions, we can typically benefit in terms

of an enhanced estimation accuracy. Therefore, multidimensional versions of some of these

techniques have also been introduced. For instance, [HN98] discusses a Simultaneous Schur

Decomposition (SSD) to achieve the automatic pairing in an R-D version of Unitary ESPRIT.

A 3-D version of the Multidimensional Folding (MDF) scheme is introduced in [MSPM04], the

R-D improved MDF (IMDF) algorithm is shown in [LL06]. Moreover, a 2-D version of RARE

is discussed in [PMB04]. In [HF94], the Polynomial Root Intersection for Multi-dimensional

Estimation (PRIME) algorithm is introduced that allows to extend 1-D polynomial rooting

techniques to the 2-D case. An overview of search-free 1-D and 2-D DOA estimation methods

is also presented in [GRP10]. The application of 2-D and 3-D harmonic retrieval for MIMO

radar is discussed in [NS10].

These approaches to R-D subspace based parameter estimation have in common that the

R-D signals are stored in matrices by means of a stacking operation. Obviously this represen-

tation does not account for the R-D grid structure inherent in the data. This means that the

structure is not fully exploited which implies a potential loss in estimation accuracy. In fact,

comparing different unbiased subspace-based high-resolution parameter estimation schemes to

the ultimate lower bound on their performance given by the Cramér-Rao Bound [SN89] we

find that for many schemes there exist scenarios where the lower bound is not reached.

Therefore, we introduce a more natural approach to store and manipulate the R-D data

in its “native” multidimensional form, which is accomplished by using tensors. Tensor de-

compositions have been known for many decades. As discussed in Section 4.2, the prominent

Canonical Polyadic (CP) decomposition, also known as Canonical Decomposition (CANDE-

COMP) or Parallel Factor (PARAFAC) analysis, goes back to [CC70, Har70]. PARAFAC

has been linked to multidimensional harmonic retrieval in [SBG00]. The main drawback of

PARAFAC-based harmonic retrieval is that the computation of the PARAFAC decomposition

requires iterative algorithms with a high computational complexity. A thorough discussion of

this point is provided in Part II of this thesis.

A computationally much more simple tensor decomposition is given by the Higher Order

Singular Value Decomposition (HOSVD) [dLdMV00a], which is a special case of the Tucker3

decomposition [Tuc66]. Like the CP decomposition, the HOSVD can be seen as a multilinear

extension of the Singular Value Decomposition (SVD). Since it is very easy to compute via

a sequence of SVDs, the HOSVD is preferable over the CP decomposition in the light of the

scope of this thesis as we aim at finding algebraically simple and yet efficient solutions.

There have been other attempts to combine tensor decompositions with subspace-based
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high-resolution parameter estimation schemes before. For instance, a tensor-based spectral

MUSIC algorithm for polarized seismic source localization is discussed in [MLM05]. The au-

thors construct a covariance tensor from a sequence of 2-D observation matrices (antennas

and polarization), which they decompose into a set of mutually orthogonal eigentensors with

a Higher-Order Eigenvalue Decomposition (HOEVD) [dLdMV00a]. The null-space projection

for spectral MUSIC is then found from the M − d weakest eigentensors where M is the total

number of sensors and d the number of sources. A tensor gain of the resulting method compared

to previous matrix-based MUSIC is reported in [MLM05]. Single-channel and multi-channel

harmonic retrieval via the HOSVD and the Hankel total least squares method is discussed

in [PdLvH05]. A 3-D “Hankel tensor” is constructed and decomposed into a diagonal ten-

sor and three Vandermonde matrices in the separate modes that share common generators.

Subspaces for these 1-D Vandermonde matrices are estimated separately in the three dimen-

sions based on a truncated HOSVD, whereas we propose to use all dimensions jointly, see

Section 10.2. A decoupled Root-MUSIC algorithm for R-D harmonic retrieval is discussed in

[Boy08], where a HOSVD is used to find subspaces in the separate 1-D modes for a sequence

of 1-D Root-MUSIC algorithms. The correct pairing across dimensions has to be found in a

subsequent step via an iterative procedure. Finally, R-D harmonic retrieval based on the CP

decomposition of a fourth-order cumulant tensor is for instance discussed in [Boy06]. However,

all these approaches have in common that they are tailored to one specific algorithm instead

of providing a generic approach to using tensors in multi-dimensional parameter estimation

schemes. Moreover, the HOSVD is used only to find subspaces in separate modes but not to

estimate one combined R-D tensor-based subspace estimate.

To this end, we have defined the HOSVD-based signal subspace estimate for multi-dimensional

signals which takes advantage of the multidimensional structure of the data in [RHD06]. This

subspace replaces the unstructured matrix-based subspace estimate and can hence be used to

improve arbitrary multi-dimensional subspace-based parameter estimation schemes. Based on

this result, completely tensor-based formulations of R-D Standard ESPRIT and R-D Unitary

ESPRIT have been provided in [HRD08]. These have enabled us to find further improvements

to R-D ESPRIT-type algorithms that take advantage of the tensor structure, e.g., the Tensor-

Structure SLS (TS-SLS) algorithm [RH07b], which provides a tensor gain even in cases where

the HOSVD-based signal subspace estimate is identical to the SVD-based subspace estimate

(cf. Section 10.2 and the simulation result shown in Figure 11.6). R-D Standard Tensor-

ESPRIT and R-D Unitary Tensor-ESPRIT are discussed in Section 11.4, TS-SLS is shown in

Section 11.7 (see also Table 13.1 and Table 13.2 for an overview of the various ESPRIT-type

algorithms discussed in this part of the thesis).
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In DOA applications where the sources are restricted to transmit symbols from real-valued

constellations (such as Binary Phase Shift Keying (BPSK) or Amplitude Shift Keying (ASK))

or they use an Offset Quadrature Phase Shift Keying (OQPSK) or a Minimum Shift Key-

ing (MSK) modulation scheme, the receiver obtains a superposition of multi-dimensional sig-

nals with complex amplitudes that are no longer circularly symmetric [Pic94]. In this case,

the covariance matrix does not fully describe the second-order behavior and a second quantity

known as relation matrix [Pic96], pseudo covariance matrix [NM93], or complementary covari-

ance matrix [SS03] needs to be taken into account. It has been shown that this matrix provides

additional structural information that can be exploited, e.g., via widely linear signal processing.

Fundamental results on the modeling and the prediction of non-circular random processes are

discussed in [PB97], widely linear MMSE estimation is shown in [PC95], and a rank-reduced

Wiener filter is provided in [SS03]. Moreover, applications to detection and estimation, widely

linear beamforming, equalization, interference-suppression, and multi-user detection in DS-

CDMA systems are, for instance, presented in [SS05], [CB07, SSW+11, SdLW+11], [GSL03],

[SDHW12], and [BL03], respectively. For a survey on non-circular signals and their applica-

tions in signal processing, the interested reader is referred to [SS10].

For the subsequent chapters, we are interested in the application of widely linear signal

processing for non-circular random variables to subspace-based high-resolution parameter es-

timations schemes. It has been shown that existing algorithms can be improved significantly if

the non-circularity of the source symbols is exploited. Corresponding versions of Root-MUSIC

and Standard ESPRIT have been introduced in [CWS01], [ZCW03], respectively. Moreover,

MUSIC-like procedures for the case where circular and strict-sense non-circular signals coexist

are discussed in [GNW08, LLXZ12]. A spectral MUSIC-like estimation algorithm that takes

advantage of weak-sense non-circular sources is shown in [AD06]. However, the improvement

compared to the circular case is particularly strong only for the limiting case of strict-sense

non-circularity. Due to the fact that non-circular sources can be separated based on their phase

offsets, the improvement in terms of resolution capabilities can be tremendous (cf. Section 11.8

where we present numerical results).

We have extended these proposals by a corresponding version of Unitary ESPRIT, first

introduced in [HR04]. As we show in Section 11.5.2, the performance of the resulting “NC

Unitary ESPRIT” algorithm is identical to the Standard ESPRIT version from [ZCW03] while

being significantly less complex since all computations are carried out in the real-valued do-

main. Moreover, due to the row-wise augmentation of the mesurement matrix, the antenna

array is virtually doubled, which doubles the number of resolvable wavefronts and provides a

significantly lower estimation error compared to Unitary ESPRIT.
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Exploiting the non-circularity and the multidimensional structure of the signals jointly has

first been proposed in [RH09b], where R-D NC Tensor-ESPRIT-type algorithms are intro-

duced. As we discuss in Section 11.6, combining the two approaches is not a trivial task,

since the row-wise augmentation performed for NC Unitary ESPRIT destroys the separable

array structure required for tensor-based ESPRIT-type algorithms. As a remedy, a mode-wise

tensor augmentation is proposed and Tensor-ESPRIT-type algorithms for non-circular sources

are derived.

An additional major contribution in this part of the thesis is the introduction of a generic

framework for the analytical performance assessment of multi-dimensional subspace-based pa-

rameter estimation schemes. This framework is used to derive a first-order perturbation ex-

pansion of the tensor-based subspace estimate as well as the ESPRIT-based estimates of the

desired frequencies. The motivation behind such an analytical framework is to gain further

insights into when the tensor-based approach provides a significant improvement in terms of

the performance and when this is not the case.

Our framework is based on a first-order perturbation expansion of the Singular Value De-

composition which was introduced in [LLV93]. This expansion models the estimation error of

the signal subspace as an explicit function of the perturbation of the data (i.e., the additive

noise), only assuming that the perturbation is small compared to the desired signal. The main

advantage of this approach is that no assumptions about the statistics of the desired signal or

the perturbation are required. Moreover, it is asymptotic in the effective SNR, i.e., it becomes

exact as either the noise variance vanishes or the number of samples approaches infinity.

This is not the case for many existing analytical performance results for high-resolution

parameter estimation algorithms. The most frequently cited papers [KB86] for the MUSIC

algorithm and [RH89a] for ESPRIT as well as many follow-up papers which extend the orig-

inal results (e.g., [PK89b], [Fri90], [MZ94], [ZKM92], [MHZ96]) are based on a result on the

distribution of the eigenvectors of a sample covariance matrix first published in [Bri75]. How-

ever, the result shown in [Bri75] requires the desired signal as well as the noise to be Gaussian

distributed which is not required by our framework based on [LLV93]. Moreover, [Bri75] is

asymptotic in the number of samples, whereas [LLV93] can be applied even in the single snap-

shot case (provided the noise variance is sufficiently small). Another drawback of [Bri75] is

that the expressions for the covariance matrix of the eigenvectors are rather long and difficult

to simplify, whereas [LLV93] provides intuitive and short expressions.

We develop explicit expansions of the estimation errors of the subspaces and the spatial

frequencies in terms of the additive noise as well as generic Mean Squared Error (MSE) ex-

pressions. Furthermore, we show that in special cases, the MSE expressions can be simplified
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into very compact formulas that only depend on the physical parameters such as the dimen-

sions of the array or the Signal to Noise Ratio (SNR). Such expressions provide deep insights

into when the corresponding algorithms are particularly efficient. One important conclusion

we can draw based on these analytical results is that for a single source, all Least Squares (LS)-

based ESPRIT-type algorithms yield the same MSE and that for larger arrays, the MSE can be

significantly improved via a single iteration of the Structured Least Squares (SLS) algorithm.

9.2. Notation and data model

In order to motivate the tensor-based data model for multi-dimensional signals we discuss two

examples for applications where such signals appear. The examples are:

Example 9.2.1. 2-D direction of arrival (DOA) estimation: Consider d terminals that

transmit signals wirelessly to a central receiver, e.g., a base station, which is equipped with

a two-dimensional antenna array. It is our goal to estimate the azimuth and elevation angles

(directions of arrival, defined in Figure 9.1) under which the base station receives the users’

transmissions.

Example 9.2.2. Geometry-based parametric channel modeling: Here the goal is to

describe the propagation of a signal between a transmitter and a receiver using a geometry-

based channel model and fitting the model parameters to realistic MIMO channels measured

in a channel sounding experiment [ZHM+00]. A popular geometry-based channel model is the

double-directional MIMO channel model [ZFDW00, SMB01], which describes the propagation

by a superposition of rays that are reflected by point-like scatterers. To perform the mea-

surement, both transmitter and receiver are equipped with multiple antennas and one link

end (typically the receiver) is moved along predefined measurement tracks. For each position,

the channel between all pairs of transmit and receive antennas is measured, for instance, by

employing an antenna switching pattern. More precisely, for each antenna pair the channel

transfer function is measured in a certain bandwidth, which can be achieved by transmitting a

periodic multi-sinusoidal signal to obtain the complex channel gain at specific frequency bins

[THR+00]. This measurement setup allows to resolve the dominant individual propagation

paths in multiple dimensions:

(a) the spatial dimensions at the receiver, from which directions of arrival can be estimated;

(b) the spatial dimensions at the transmitter, allowing us to estimate directions of departure;

(c) the frequency dimension and the time dimension, which allow to access the delay and

the Doppler shift of the individual paths;

97



9. Introduction to subspace-based parameter estimation

(d) polarization, providing additional insight to how the spatial orientation of the wave is

altered during the propagation.

As we show in the sequel, under certain assumptions both examples give rise to a superpo-

sition of multi-dimensional signals which can efficiently be modeled via tensors. Let us begin

with a generic mathematical formulation of the data model and then provide the link to the

two examples given above.

9.2.1. Scalar data model

Definition 9.2.1. A signal x(0)(t) ∈ C is called R-dimensional (R > 1) if it can be expressed

as a separable function in R variables p(1), p(2), . . . , p(R) ∈ R in the following manner

x(0) (p(1), p(2), . . . , p(R), t) = s(t) ⋅ R

∏
r=1

a(r) (p(r)) , (9.1)

where s(t) ∈ C is the amplitude of the signal and the function a(r) (p(r)) ∶ R→ C describes the

variation of the signal along variable p(r) (in dimension r).

Note that the superscript (0) is used to indicate the noise-free signal.

Definition 9.2.2. A snapshot of an R-dimensional signal is defined as an observation of an

R-dimensional signal according to Definition 9.2.1 sampled with Mr sampling points p
(r)
1 <

p
(r)
2 . . . < p

(r)
Mr
∈ R in the variable p(r) for r = 1,2, . . . ,R, such that we can write

x(0)m1,m2,...,mR
[n] = x(0) (p(1)m1

, p(2)m2
, . . . , p(R)mR

, tn) = s[n] ⋅ R

∏
r=1

a(r) (p(r)mr
) , (9.2)

where n is an integer index enumerating the N snapshots, i.e., n = 1,2, . . . ,N and s[n] =
s(tn) ∈ C is the amplitude of the signal x at the snapshot n.

Based on Definition 9.2.2 the generic formulation of our R-D data model is the following:

Our observed signal is modeled as a sequence of N snapshots of a linear superposition of d

R-dimensional signals under additive noise. Mathematically, we can write

xm1,m2,...,mR
[n] = ( d

∑
i=1

si[n] ⋅ R

∏
r=1

a
(r)
i (p(r)mr

)) + nm1,m2,...,mR
[n], (9.3)

where i = 1,2, . . . , d enumerates the signals and nm1,m2,...,mR
[n] represents the additive noise.
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To underpin the practical significance of the mathematical model shown in (9.3), we return

to the examples from above and show under which conditions they give rise to signals that

obey (9.3).

Example 9.2.1 (continued): The 2-D DOA Example 9.2.1 obeys (9.3) under the following

assumptions:

(A1) Each terminal transmits a narrow-band bandpass signal modulated at the carrier fre-

quency fc and described by a digital modulation scheme with symbol rate Ts where

Ts ⋅ fc ≪ 1. Therefore, at time instant n ⋅ Ts, the complex symbol s0,i[n] is transmit-

ted by the i-th terminal for i = 1,2, . . . , d. The received symbol si[n] is then given by

si[n] = g ⋅ s0,i[n]e−ϕi , where g ∈ R and ϕi ∈ [−π,π] represent the magnitude and the

phase of the path between the i-th user and the receiver, respectively.

(A2) The terminals are in the far-field of the antenna array, i.e., their distance to the base

station is significantly larger than the wavelength λc = c/fc, where c denotes the speed

of light.

(A3) The array manifold can be described by a separable function in two spatial variables. An

example for such an array configuration is anM1×M2 Uniform Rectangular Array (URA)

with isotropic antenna elements and inter-element spacing ∆(1) and ∆(2), respectively.
To avoid spatial aliasing, ∆(1) and ∆(2) should be less than or equal to λc/2.

Note that from (A2) it follows that the base station observes a planar wavefront in two

dimensions which is sampled uniformly due to (A3), i.e., we observe a 2-dimensional harmonic

wave. The resulting observed sample at antenna m1,m2 and time snapshot n can be written

as [HN98]

xm1,m2
[n] = d

∑
i=1

si[n] 2

∏
r=1

eµ
(r)
i
(mr−1) + nm1,m2

[n], (9.4)

for mr = 1,2, . . . ,Mr, r = 1,2 and n = 1,2, . . . ,N . Moreover, µ
(1)
i and µ

(2)
i are the spatial

frequencies of the i-th wavefront (also referred to as the direction cosines) which are given by

µ
(1)
i = 2π

∆(1)
λc

cos(θi) sin(αi) (9.5)

µ
(2)
i = 2π

∆(2)
λc

sin(θi) sin(αi), (9.6)

where θi and αi represent the azimuth and the co-elevation angle of the i-th planar wavefront
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Figure 9.1.: Definition of azimuth (θ) and co-elevation (α) angles of an impinging planar
wavefront for the 2-D DOA Example 9.2.1.

relative to the uniform rectangular array. The definition of the angles is visualized in Figure 9.1.

Finally nm1,m2
[n] represents the additive measurement noise. Note that αi cannot be uniquely

recovered from µ
(1)
i and µ

(2)
i since sin(α) = sin(π − α),∀α. Geometrically, this ambiguity

refers to the half space above and below the antenna array. However, this can often be

resolved via plausibility in practice. Obviously, (9.4) is a special case of (9.3) for R = 2, where

the dimensions p(1) and p(2) correspond to the two spatial dimensions of the URA and the

functions a
(r)
i (p(r)) are harmonic waves with frequencies µ

(r)
i , i.e., a

(r)
i (p(r)) = e⋅µ(r)i

⋅p(r) .

Example 9.2.2 (continued): It has been shown that under idealized conditions, the channel

transfer function corresponding to the double-directional ray-based channel model can be de-

scribed by a R-D harmonic signal (e.g., R = 6 using the 2-D aperture domains at the transmitter

and the receiver, the time, and the frequency dimension [RHST01, HTR04]). For illustration

purposes, let us consider a strongly simplified example where we assume the following:

(A1) Transmitter and receiver are equipped with uniform linear arrays. Only one polarization

is excited at the transmitter and only one polarization is measured at the receiver.

(A2) Only specular components are considered, i.e., we assume that the received signal can

be modeled as the superposition of d planar wavefronts as a result of d reflections in the

far-field of the transmitting and the receiving antenna arrays.

100



9.2. Notation and data model

(A3) We transmit a band-limited signal comprising of NF sinusoidals spaced by a frequency

offset of f0 apart and centered around a carrier frequency fc. The complex amplitude

of the sinusoidal transmitted at frequency bin nF is c[nF]. Note that the antenna

characteristics have to be constant over the entire frequency range. This implies that

the bandwidth should not be chosen too large since otherwise the variation of the wave-

length over the frequency becomes significant. In other words, we need the narrow-band

assumption NF ⋅ f0 ≪ fc.

(A4) The scenario is stationary during the entire switching between the antennas at the trans-

mitter, i.e., we can model one snapshot of the set of channel gains between the MT trans-

mit antennas and the MR receive antennas as if they were measured simultaneously.

In this case, the set of measured channel gains corresponding to samples of the time-varying

transfer function between transmit antenna mT and receive antenna mR at frequency bin nF

is then estimated by dividing the measured complex amplitudes by the amplitudes c[nF] used
at the transmitter for nF = 1,2, . . . ,NF. The resulting channel gains can be expressed in the

complex low-pass domain as

xmT,mR,nF
[n] = d

∑
i=1

si[n] ⋅ gmT
(θT,i) ⋅ e⋅mT⋅µT(θT,i) ⋅ gmR

(θR,i) ⋅ e−⋅mR⋅µR(θR,i)

⋅ e−⋅nF⋅µF,i + nmT,mR,nF
[n], (9.7)

for mR = 1,2, . . . ,MR, mT = 1,2, . . .MT, and nF = 1,2, . . . ,NF. Here, si[n] ∈ C is the time-

varying amplitude of the i-th path and µT(θT,i) as well as µR(θR,i) represent the spatial

frequencies of the i-th path at the transmitter and the receiver given by

µT(θT,i) = 2π∆T

λc

cos(θT,i) (9.8)

µR(θR,i) = 2π∆R

λc

cos(θR,i), (9.9)

where ∆T and ∆R correspond to the inter-element spacing of the transmitter’s and the re-

ceiver’s ULA, respectively. Moreover, θT,i and θR,i are the direction of departure and the

direction of arrival angle, as shown in Figure 9.2. The terms gmT
(θ) ∈ C and gmR

(θ) ∈ C
denote the complex beam patterns of the mT-th transmit and the mR-th receive antenna as a

function of the azimuth angle θ, respectively. Finally, we have

µF,i = 2π(τi − τref)f0 (9.10)
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9. Introduction to subspace-based parameter estimation

Figure 9.2.: Definition of direction of arrival and direction of departure angles θT and θR for
the channel sounding Example 9.2.2.

which models the linear phase term in the frequency domain which arises due to the fact that

the i-th wavefront arrives with a delay τi relative to some reference delay τref (e.g., the delay of

the first path). Note that due to the sampling of the frequency axis with a subcarrier spacing

of f0, delays are only uniquely recovered in the range [0,1/f0].
We conclude that (9.7) is a special case of (9.3) for R = 3, where the dimensions p(1) and p(2)

correspond to the angular dimensions at the transmitter and the receiver, and p(3) corresponds
to the frequency domain, respectively.

However, one measurement of the channel gains provides us with a single snapshot N = 1

only. In the next snapshot, the channel conditions have already changed due to the time-

varying nature of the propagation conditions. Hence, to obtain multiple snapshots which

are needed for subspace-based parameter estimation schemes, spatial smoothing [SWK85] or

tensor-based spatial smoothing [THG09a] must be applied (cf. Section 10.3).

9.2.2. Tensor and matrix formulation

In order to arrive at a more compressed formulation of the generic data model in (9.3) we

collect the samples of the R-D signal xm1,m2,...,mR
[n] at N subsequent snapshots into one

array. As our signal is referenced by R + 1 indices, the most natural way of formulating the

model is to employ an (R + 1)-way array X ∈ CM1×M2...×MR×N which contains xm1,m2,...,mR
[n]

for mr = 1,2, . . . ,Mr, r = 1,2, . . . ,R, and n = 1,2, . . . ,N . We can then conveniently express the

model from (9.3) via the n-mode product introduced in Section 4.1 and obtain

X =A ×R+1 ST +N , (9.11)
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where S ∈ Cd×N contains the amplitudes si[n], i = 1,2, . . . , d, n = 1,2, . . . ,N (corresponding

to the symbols in Example 9.2.1 and to the path amplitudes in Example 9.2.2). Note that

subspace-based parameter estimation schemes require the rank of the matrix to be equal

to d. If the rank{S} < d, preprocessing has to be applied, cf. Section 10.3. Moreover,

N ∈ C
M1×M2...×MR×N collects all the noise samples nm1,m2,...,mR

[n] in the same manner as

X . Finally, A ∈ CM1×M2...×MR×d is referred to as the “array steering tensor” [HRD08]. It can

be expressed by virtue of the concatenation operator defined in (4.4) via

A = [A1 R+1A2 R+1 . . . R+1Ad] (9.12)

Ai = a
(1)
i ○ a(2)i ○ . . . ○ a(R)i ∈ C

M1×M2×...×MR (9.13)

a
(r)
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(r)
i,1 (p(r)1 )

a
(r)
i,2 (p(r)2 )
⋮

a
(r)
i,Mr
(p(r)Mr

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

Mr×1. (9.14)

Here, ○ represents the outer product operator introduced in Section 4.1. Equation (9.13) shows

how the necessary assumption of separability in defining R-D signals translates to the outer

product structure across dimensions in the array steering tensors.

As shown in Appendix D.1, an alternative expression for the array steering tensor is given

by

A = IR+1,d ×1A(1) ×2A(2) . . . ×RA(R) = IR+1,d

R

⨉
r=1

rA
(r), (9.15)

where A(r) = [a(r)1 , . . . ,a
(r)
d
] ∈ CMr×d is referred to as the array steering matrix in the r-th

mode.

The strength of the data model in (9.11) is that it represents the signal in its natural R-

dimensional structure by virtue of the measurement tensor X . Before tensor calculus was used

in this area, a matrix-based formulation of (9.11) was needed. This requires stacking some of

the dimensions into rows or columns. A meaningful definition of an R-D measurement matrix

X is to apply stacking to all “spatial” dimensions 1,2, . . . ,R along the rows and align the

snapshots n = 1,2, . . . ,N along the columns. Mathematically, we can write X = [X ]T(R+1) ∈
C
M×N , where M = ∏R

r=1Mr. Applying this stacking operation to (9.11), we arrive at the

matrix-based data model

X =A ⋅S +N . (9.16)
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Here, A = [A]T(R+1) ∈ CM×d and N = [N ]T(R+1) ∈ CM×N . Note that since A obeys (9.15) we

immediately find

A = [A]T(R+1) =A(1) ◇A(2) ◇ . . . ◇A(R) (9.17)

by applying identity (4.25). Therefore, whenever we encounter a linear mixture model like (9.16)

where the “mixing matrix”A can be decomposed into a Khatri-Rao product of smaller mixture

matrices according to (9.17), an alternative representation of the matrix-valued data model

is given by the tensor-valued data model (9.11). We can typically benefit from the more ex-

plicit representation of the R-dimensional structure in (9.11) via a tensor, e.g., filter out the

unstructured noise more efficiently, as we show in Section 10.2.

9.2.3. 1-D and 2-D antenna arrays

We have seen in Example 9.2.1 that a Uniform Rectangular Array (URA) is an example for

a 2-D antenna array that obeys our R-D model for R = 2. This sparks the question whether

there are other types of 2-D arrays that can be used in this context.

In general, to fully describe a 2-D antenna we have to measure the response of each element

as a function of azimuth and elevation, taking into account the polarization of the wave,

i.e., excite and measure with both vertical and horizontal polarizations. Since anything in

the near-field of an antenna element influences the beam patterns, it is best to measure the

elements within the array to capture the effects of mutual coupling. For simplicity, let us

focus on a single polarization only. Then, the result of this measurement is a complex beam

pattern gm(θ,α) ∈ C which contains the response of the m-th antenna to a wave impinging

from direction θ,α. The 2-D antenna array obeys a 2-D model according to (9.11) only under

the following two conditions:

1. The array elements are placed in a 2-D grid that is separable, i.e., it can be constructed

as the outer product of two 1-D grids. Examples of not separable and separable 2-D

sampling grids are shown in Figure 9.3a and Figure 9.3b, respectively. Figure 9.3c shows

the special case of a 2-D uniform sampling grid1.

2. The complex beam patterns gm(θ,α) are either

a) expressed via a separable function over the direction cosines µ(r) corresponding to

the two array dimensions, cf. (9.5) and (9.6) or

1 Hexagonal arrays are another example of non-separable 2-D arrays. Therefore, we cannot apply tensor calculus
there, even though the application of 3-D Unitary ESPRIT is possible, as we have shown in [RH05, RH06].
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b) equal for all antenna elements, i.e., gm(θ,α) = g(θ,α) for m = 1,2, . . . ,M (including

their spatial orientation in the array). In the latter case, separability is not needed,

as shown in Appendix D.2.

Note that the if the 2-D array does not obey the two assumptions, its two dimensions cannot

be separated and we have to stack the elements in one mode of our measurement tensor.

As explained in Example 9.2.2, another way to obtain two spatial dimensions is to con-

sider the transmitter and the receiver jointly, measuring the channel gain between all pairs of

transmit and receive antennas. In this case, the vectors a(r) correspond directly to the array

steering vectors of the transmit and the receive array (cf. (9.13)), respectively. To obtain a(r)
as a function of the desired parameters, e.g., the azimuth angle θ, measured beam patterns

can be interpolated. For a discussion on efficient storage and interpolation of measured beam

patterns, the reader is referred to [TLRT05].

A simpler approach to compute a(r) is to impose a model. For instance, if the antenna

elements are assumed to be aligned uniformly, we can write

a(r)(θ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(θ)
g2(θ) ⋅ e⋅µ(r)(θ)
g3(θ) ⋅ e⋅2⋅µ(r)(θ)

⋮
gMr(θ) ⋅ e⋅(Mr−1)⋅µ(r)(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

Mr×1, (9.18)

where gmr(θ) ∈ C represents the complex beam pattern of the mr-th element as a function of

the azimuth angle θ and the first element is chosen as a phase reference. Moreover, µ(r)(θ) =
2π∆

λc
cos(θ), where ∆ is the spacing between elements. Note that if all elements have the same

beam pattern, i.e., g1(θ) = . . . = gMr(θ), the beam pattern can be moved in front of the array

steering vector as a scalar quantity, i.e.,

a(r)(θ) = g(θ) ⋅ ā(r)(θ) = g(θ) ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

e⋅µ
(r)(θ)

e⋅2⋅µ
(r)(θ)
⋮

e⋅(Mr−1)⋅µ(r)(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

Mr×1. (9.19)

In this case, the “remaining” array steering vector ā(r)(θ) has a Vandermonde structure.

Arrays that obey (9.19) are referred to as Uniform Linear Arrays (ULAs). In the special case

where the antennas are assumed to be omnidirectional we have g(θ) = 1 ∀θ. Note that in this
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(a) Not a separable 2-D grid (b) Separable 2-D grid (c) Uniform 2-D grid

Figure 9.3.: Examples of 2-D sampling grids: (a) not a separable 2-D sampling grid; (b)
separable 2-D sampling grid composed of the outer product of two (non-uniform) linear
arrays; (c) uniform separable 2-D grid (URA).

case the azimuth angle cannot be uniquely recovered since µ(θ) = µ(−θ) and hence the array

steering vector for an impinging wavefront from the azimuth angle θ is indistinguishable from

the array steering vector for an impinging wavefront from the azimuth angle −θ.
Another important special case are antenna arrays that are invariant under mirroring around

their centroids. Such arrays are called centro-symmetric [XRK94]. For instance, ULAs and

URAs are centro-symmetric arrays2. Moreover, the 2-D antenna configuration depicted in

Figure 9.3b is centro-symmetric in vertical direction but not centro-symmetric in horizontal

direction (and hence not 2-D centro-symmetric). Mathematically, the arrays steering matrix

A ∈ CM×d for an R-D array that is R-D centro-symmetric satisfies

ΠM ⋅A∗ =A ⋅∆, (9.20)

where ∆ ∈ Cd×d is a unitary diagonal matrix which depends on the choice of the phase center

of the array.3

9.2.4. Strict-sense non-circular sources

Up to here we have not made any further assumptions about the amplitudes of the multi-

dimensional signals, which we collect in the matrix S, except for the fact that the rank of

S should be equal to d. However, as we discuss in Section 11.5 and 11.6, via simple modi-

2If the elements are not omnidirectional this requires that their complex beam patterns also satisfy
gM−m+1(θ,α) = g∗m(θ,α). As, shown in Appendix D.2 this restriction does not apply if all elements have
the same beampattern, i.e., gm(θ,α) = g(θ,α) for m = 1,2, . . . ,M , where g(θ,α) can be arbitrary.

3If the phase center coincides with the array’s centroid we have ∆ = Id.
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fications of ESPRIT-type algorithms4 [HR04, RH09b] we can take advantage of a particular

structure in these amplitudes referred to as second-order non-circularity. This occurs for in-

stance in communication-type scenarios (cf. Example 9.2.1) where the transmitters employ

specific modulation schemes, such as BPSK, ASK, MSK, or OQPSK.

A full statistical description of complex random variables includes not only the individual

distribution of their real and imaginary parts but also the joint distribution since they might be

correlated. A simplifying assumption that is often made is to consider second-order circularly

symmetric complex random variables. A zero mean complex random variable Z = X + Y
is said to be second-order circularly symmetric if it satisfies E{Z2} = 0, which implies that

real part and imaginary part are uncorrelated and have the same variance. Consequently, if

E{Z2} ≠ 0, the random variable Z is (second-order) non-circular. We can measure the degree

of non-circularity via a scalar parameter ζ referred to as the “non-circularity rate” [DA04],

“circularity coefficient” [EK06], or “circularity quotient” [Oll08], which is defined as

ζ =
E{Z2}
E{∣Z ∣2} . (9.21)

It can be shown that ∣ζ ∣ ≤ 1. A random variable with 0 < ∣ζ ∣ < 1 is called (second-order) weak-

sense non-circular, for ∣ζ ∣ = 1 we speak of (second-order) strict-sense non-circularity [RH07a].

Strict-sense non-circular random variables are sometimes also referred to as rectilinear [CP06].

Note that strict-sense non-circularity implies a linear dependence between real and imaginary

part of Z. We can think of Z as a real-valued random variable which is rotated by a com-

plex phase term, i.e., Z = W ⋅ eϕ, where W ∈ R is a random variable and ϕ is deterministic

(fixed). In a communication system, the amplitudes si[n] are non-circular random variables

if the symbols are drawn from constellations which are not circularly symmetric. We obtain

strict-sense non-circular (rectilinear) amplitudes if the transmitters use real-valued constella-

tions (such as BPSK or ASK), which appear rotated by complex phase terms at the receiver

since each transmitter may have a different transmission delay. Note that OQPSK and MSK

symbols can be transformed into rectilinear amplitudes by applying an appropriate derotation

at the receiver [CP06]. Figure 9.4 shows an example of an I/Q diagram displaying Inphase

vs. Quadrature (I/Q) components of the received symbols for two users that transmit using a

real-valued constellation. Since each user’s transmission undergoes a different phase rotation

(ϕi), the receiver observes rotated real-valued random variables that satisfy the strict-sense

non-circularity property. For the symbol matrix S ∈ Cd×N this implies that it can be written

4As discussed in Section 9.1, many other subspace-based parameter estimation schemes can benefit from non-
circular sources as well [CWS01, ZCW03, AD06, LLXZ12].
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Re{si[n]}

Im
{s

i[
n
]}

ϕ1

ϕ2

User 1
User 2

Figure 9.4.: Example for strict-sense non-circular amplitudes: Two users (red, blue) transmit
symbols drawn from real-valued constellations. Since they undergo different phase rotations,
the I/Q diagram at the receiver consists of differently rotated real-valued random variables,
i.e., the complex symbols si[n] can be described as strict-sense non-circular random vari-
ables.

as [ZCW03]

S =Ψ ⋅S0, (9.22)

where S0 ∈ R
d×N and Ψ = diag {[eϕ1 , . . . , eϕd]}.

Non-circular random variables can be exploited in signal processing applications since they

carry a specific structure. If s[n] is a non-circular random variable, in addition to the co-

variance matrix Rss = E{s[n] ⋅ s[n]H}, the pseudo-covariance matrix R̃ss = E{s[n] ⋅ s[n]T}
contains statistical information about s[n] we can take advantage of. For circular random

variables, the pseudo-covariance matrix is equal to the zero matrix.

108



10. Subspace estimation

The first step of subspace-based parameter estimation is to find an estimate of the signal

subspace. The signal subspace is defined as the span (i.e., the set of all linear combinations)

of the columns of the array steering matrix A (cf. Section 9.2). Its orthogonal complement in

C
M is referred to as the noise subspace.

In this section we show how the multidimensional structure of R-dimensional signals can

be exploited to enhance the accuracy of the signal subspace estimate. This enhancement

is achieved by enforcing the specific structure of the multidimensional signals onto the un-

structured subspace estimate. Note that this enhanced signal subspace estimate can be com-

bined with arbitrary multi-dimensional subspace-based parameter estimation schemes, e.g.,

R-D MODE, R-D RARE, R-D MUSIC1, or R-D ESPRIT. We also provide a strong link be-

tween the matrix-based and the tensor-based subspace estimate that provides a more clear

intuition where the improvement comes from and in which scenarios it is absent.

We begin by reviewing matrix-based subspace estimation in Section 10.1. In Section 10.2

we introduce the enhanced tensor-based subspace estimate and prove its link to the matrix-

based subspace estimate via a structured projection. Section 10.3 discusses forward-backward

averaging and real-valued subspace estimation in the matrix and the tensor case. Finally, a

summary is provided in Section 10.4.

10.1. Matrix-based subspace estimation

As explained in Section 9.2, the N snapshots from the R-D signal can be represented via

an M ×N matrix X where each column represents one snapshot and the R dimensions are

stacked along its rows. This matrix then obeys the data model (9.16) that we restate here for

convenience

X =A ⋅S±
X0

+N , (10.1)

1This R-D extension differs from the existing R-D MUSIC [MLM05] which, as explained in Section 9.1, is
based on eigentensors obtained from an HOEVD of the covariance tensor estimated from the vector-sensor
observation matrices.
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where X = [X ]T(R+1) ∈ CM×N , A = [A]T(R+1) ∈ CM×d, and N = [N ]T(R+1) ∈ CM×N . Obviously,

the noise-free part of the data X0 in (10.1) is at most rank-d. Therefore, we perform a rank-

d-approximation of X via the truncated SVD, which is optimal in the Frobenius norm sense

[EY36], cf. (3.50). The column space of this matrix is spanned by the d dominant left singular

vectors of X and it is an estimate of the true signal subspace which is spanned by the columns

A. Note that since X0 = A ⋅ S, the true signal subspace is identical to the span of the d

dominant left singular vectors of X0, i.e., all columns of X0 lie in the signal subspace. The

SVDs of X0 and X are expressed as

X0 = [U s, Un] ⋅ ⎡⎢⎢⎢⎢⎣
Σs 0d×(N−d)

0(M−d)×d 0(M−d)×(N−d)

⎤⎥⎥⎥⎥⎦ ⋅ [V s, V n]H (10.2)

X = [Û s, Ûn] ⋅ ⎡⎢⎢⎢⎢⎣
Σ̂s 0d×(N−d)

0(M−d)×d Σ̂n

⎤⎥⎥⎥⎥⎦ ⋅ [V̂ s, V̂ n]H . (10.3)

Here, U s ∈ C
M×d and Un ∈ C

M×(M−d) are orthonormal basis for the signal subspace and the

noise subspace, and Û s ∈ C
M×d and Ûn ∈ C

M×(M−d) are their estimates obtained from X.

Moreover, Σs = diag {[σ1, σ2, . . . , σd]} ∈ Rd×d contains the d non-zero singular values on its

main diagonal.

10.2. Tensor-based subspace estimation

To find a subspace estimate that takes the natural tensor structure into account (as discussed

in Section 9.1) we employ a multi-dimensional extension of the SVD in form of a suitable

tensor decomposition. As discussed in Section 4.2, depending on whether diagonality or uni-

tarity should be preserved, different multilinear extensions of the SVD can be defined. We

choose the Higher-Order SVD (HOSVD) since it is easily computed via SVDs of the unfold-

ings of the tensor. Moreover, the truncated HOSVD shown in (4.29) allows for multilinear

low-rank approximation in a manner similar to the truncated SVD (for a discussion on the

optimal multilinear rank-reduction via the HOOI algorithm vs. the truncated HOSVD see

Section 4.2.1).

Let X 0 be the noise-free observation, such that X = X 0 +N . Then, the SVD of the r-th

unfolding of X 0 and X can be expressed as

[X 0](r) = [U [s]r , U
[n]
r ] ⋅ ⎡⎢⎢⎢⎢⎣

Σ
[s]
r 0d×(N−d)

0(M−d)×d 0(M−d)×(N−d)

⎤⎥⎥⎥⎥⎦ ⋅ [V
[s]
r , V

[n]
r ]H (10.4)

110



10.2. Tensor-based subspace estimation

[X ](r) = [Û [s]r , Û
[n]
r
] ⋅ ⎡⎢⎢⎢⎢⎣

Σ̂
[s]
r 0d×(N−d)

0(M−d)×d Σ̂
[n]
r

⎤⎥⎥⎥⎥⎦ ⋅ [V̂
[s]
r , V̂

[n]
r
]H , (10.5)

where U
[s]
r ∈ C

Mr×pr and U
[n]
r ∈ C

Mr×(Mr−pr) denote the basis for the r-space and its orthogonal

complement, respectively. Here, pr denotes the r-rank2 of X 0. Based on the r-spaces U
[s]
r we

can estimate the core tensor S[s] ∈ Cp1×...×pR×pR+1 via

S[s] = X 0 ×1 U [s]H1 . . . ×R U [s]HR ×R+1 U [s]HR+1 (10.6)

Ŝ
[s]
= X ×1 Û [s]H1 . . . ×R Û [s]HR ×R+1 Û [s]HR+1. (10.7)

The truncated HOSVD then reads as

X 0 = S
[s] ×1 U [s]1 . . . ×R U [s]R ×R+1 U [s]R+1 (10.8)

X ≈ Ŝ
[s] ×1 Û [s]1 . . . ×R Û [s]R ×R+1 Û [s]R+1 = X̂ . (10.9)

If we compare the truncated HOSVD of X in (10.9) with the truncated SVD in (10.3), we

observe that a unique feature of the HOSVD is that it performs low-rank approximations in all

R+1 modes. Hence, the multilinear structure is exploited to perform more efficient denoising.

As a multilinear extension of the subspace estimate Û s we introduce the following signal

subspace tensor3 Û
[s]
∈ C

M1×...×MR×d

Û
[s]
= Ŝ

[s] ×1 Û [s]1 . . . ×R Û [s]R ×R+1 Σ̂[s]−1R+1 . (10.10)

A formal link between Û
[s]

and Û
[s]
s is given by the following theorem:

Theorem 10.2.1. The HOSVD-based signal subspace estimate [Û [s]]T(R+1) can be computed

from the SVD-based subspace estimate Û s via the following relation

[Û [s]]T(R+1) = (T̂ 1 ⊗ T̂ 2 ⊗ . . . T̂R) ⋅ Û s, (10.11)

2In practice, we can estimate the r-ranks individually via a model order selection scheme operating on all
unfoldings individually. Alternatively, we can apply tensor-based model order selection schemes [DHRD07,
DRHdS11] to estimate d and then use pr =min(Mr, d).

3Note that in [RHD06] and [HRD08], Û
[s]

was defined without the multiplication by Σ̂
[s]−1

R+1 in the (R + 1)-th
mode. While this has no impact on the subspace of interest, we include it here since it simplifies the notation
in this section and in Chapters 11 and 12.
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where T̂ r ∈ C
Mr×Mr represent estimates of the projection matrices onto the r-spaces of X 0,

which are computed via T̂ r = Û
[s]
r Û

[s]H
r .

Proof: cf. Appendix D.3. Note that a special case of this theorem for R = 2 was first shown

by us in [RBHW09].

It is worth pointing out that (10.11) provides some rather interesting insights. Firstly, it

shows that the matrix [Û [s]]T(R+1) ∈ CM×d yields an estimate for the signal subspace, which

can be used to replace the matrix Û s. Secondly, it demonstrates that an explicit computation

of the core tensor of X is actually not necessary if only the HOSVD-based subspace estimate

is needed. Thirdly, it shows that the HOSVD-based subspace estimate can be seen as the

projection of the (unstructured) matrix-based subspace estimate onto the Kronecker structure

inherent in the data and that this projection is achieved by virtue of the Kronecker product

of r-space projection matrices. Since this projection leaves the desired signal unaltered (cf.

Corollary D.3.2) it affects only the noise, filtering out the part of the noise which does not obey

the required Kronecker structure. This observation provides a different way of understanding

the denoising obtained via multilinear rank reduction. The relation (10.11) also shows that

for any mode r where d ≥ Mr we have T̂ r = Ir and hence no performance improvement can

be obtained in this particular mode r. As a corollary from this we have [Û [s]]T(R+1) = Û s if

d ≥ max
r=1,2,...,R

(Mr), i.e., there is no improvement in terms of the subspace estimation accuracy

from the HOSVD-based subspace estimate if the number of wavefront d is greater than or

equal to the number of sensors in all R modes.

Note that we can even use (10.11) as a basis for establishing algorithms that track an

HOSVD-based subspace estimate adaptively: all we need to do is to track the subspaces of all(R + 1) unfoldings of the tensor in parallel and use (10.11) to construct an overall subspace

estimate. Since all unfoldings are matrices, arbitrary matrix-based subspace tracking schemes

can be used for this task.

10.3. Forward-Backward Averaging and Real-Valued Subspace

Estimation

If the array is centro-symmetric, i.e., ΠM ⋅A∗ =A ⋅∆ (cf. Section 9.2.3), we can apply Forward-

Backward Averaging (FBA) to the data [EJS82, PK89a]. FBA uses a symmetry in the data

to improve the estimation accuracy of the signal subspace. Moreover, two coherent sources

can be decorrelated. A “direct data” approach that operates on the matrix X to create an
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10.3. Forward-Backward Averaging and Real-Valued Subspace Estimation

additional set of N “virtual” snapshots was proposed in [HN95, Haa97a]. The augmented

measurement matrix X(fba) can be written as

X(fba) = [X ΠM ⋅X∗ ⋅ΠN] ∈ CM×2N . (10.12)

Note that X(fba) has 2N columns, i.e., the number of snapshots has been virtually doubled.

The main advantage of the direct data formulation in (10.12) is that X(fba) is a centro-

Hermitian matrix4 and hence we can apply the one-to-one mapping between the set of centro-

Hermitian matrices and the set of real-valued matrices from [Lee80]. In other words, the

matrix

ϕ (X(fba)) =QH
M ⋅X(fba) ⋅Q2N = T (X) (10.13)

is real-valued for unitary matrices QM that are left-Π-real, i.e., they satisfy Q∗M ⋅ ΠM =

QM . Note that the transformation (10.13) can be efficiently implemented by considering

sparse unitary left-Π-real matrices [HN95]. These are denoted by Q
(s)
p ∈ C

d×d and shown in

Appendix A.2. The notation T (X) in (10.13) is introduced to simplify the application of

both, FBA and the real-valued transformation. The advantage of (10.13) is that since the

matrix is real-valued, a subspace estimate is obtained by a real-valued SVD, which has a

lower computational complexity compared to the complex-valued counterpart. A real-valued

signal subspace estimate Ês ∈ R
M×d is then obtained by collecting the d dominant left singular

vectors of ϕ (X(fba)) into a matrix. Based on Ês, “unitary” versions of many DOA estimation

algorithms can be defined, e.g., the Unitary ESPRIT algorithm discussed in Section 11.3.2.

Forward-Backward Averaging and the real-valued transformation can also be defined for the

measurement tensor X . As we show in [HRD08] we can define

X (fba) = [X R+1 X
∗ ×1 ΠM1

. . . ×R ΠMR
×R+1 ΠN ] ∈ CM1×M2...×MR×N (10.14)

ϕ (X (fba)) =X (fba) ×1QH
M1

. . . ×RQH
MR
×R+1QH

2N = T (X (fba)) ∈ RM1×M2...×MR×N , (10.15)

similar to (10.12) and (10.13).

A preprocessing step that is not discussed in this thesis is spatial smoothing. Spatial smooth-

ing can be applied to decorrelate coherent wavefronts [SWK85] by dividing the array into L

identical displaced subarrays and averaging their spatial covariance matrices. As a result, L

coherent wavefronts are decorrelated. However, the number of antenna elements is also reduced

to M−L+1. Spatial smoothing can be combined with forward-backward-averaging [PK89b], in

4A matrix X ∈ Cp×q is called centro-Hermitian if it satisfies Πp ⋅X∗ ⋅Πq =X.
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10. Subspace estimation

which case 2L coherent wavefronts are decorrelated when using L subarrays. Spatial smoothing

is readily formulated in terms of tensors via the concatenation operator, as shown in [HRD08].

However, as shown in [THRG10, THG09b, THG09a], the tensor structure can be exploited

further to derive tensor-based spatial smoothing techniques that outperform matrix-based ap-

proaches significantly.

10.4. Summary

In this chapter we have derived the tensor-based signal subspace estimate for R-dimensional

signals sampled on an R-D grid. Extending the matrix-based subspace estimate obtained from

an SVD of the measurement matrix, we have applied this idea to define a tensor-based subspace

estimate computed from the HOSVD of the measurement tensor. This subspace estimate takes

advantage of the R-D structure in the data to perform more efficient denoising and thus results

in an improved subspace estimation accuracy. We have provided the link between the matrix-

based and the tensor-based subspace estimates via a structured projection in Theorem 10.2.1.

Note that the subspace can be combined with arbitrary multi-dimensional subspace-based pa-

rameter estimation schemes, e.g., R-D ESPRIT, R-D MUSIC, R-D MODE, or R-D RARE.

It represents a generic approach to extend multi-dimensional subspace-based parameter algo-

rithms to tensors and hence differs from existing approaches (e.g., the tensor-based MUSIC

algorithm for vector-sensor arrays from [MLM05], as explained in Section 9.1). We have also

briefly discussed forward-backward averaging and the real-valued subspace estimation both in

the matrix as well as in the tensor case.

In the next section we introduce enhancements of R-D ESPRIT-type algorithms that are

achieved by exploiting the multidimensional structure of the data further. We begin with

Tensor-ESPRIT-type algorithms based on Least Squares which achieve an improvement in

estimation accuracy from the enhanced subspace estimate. Subsequently, we identify further

sources of improvement, e.g., a tensor-based scheme to solve the overdetermined shift invariance

equations. The achieved improvements in terms of estimation accuracy are shown in numerical

simulations.
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11.1. Overview

The purpose of this chapter is to show how subspace-based parameter estimation schemes

can be improved by exploiting the specific structure of the signal of interest. As an example,

we choose the ESPRIT algorithm to demonstrate the enhancements, however, they can be

applied to different multi-dimensional subspace-based parameter estimation schemes as well,

e.g., MODE, RARE, or MUSIC (cf. Section 9.1 for a literature overview).

We first discuss how to exploit the structure of an R-dimensional signal sampled on a

separable R-D grid as defined in Section 9.2. In this case, the HOSVD-based subspace estimate

[RHD06, HRD08] shown in Section 10.2 can be used to improve the accuracy of subspace-based

parameter estimation schemes. In Section 11.2, we argue that the shift invariance structure

used for ESPRIT allows for a natural tensor formulation of the entire algorithm. We then

demonstrate that these “Tensor-ESPRIT”-type algorithms (introduced in Section 11.4) are

algebraically equivalent to the existing matrix-based R-D ESPRIT algorithms (reviewed in

Section 11.3) if the SVD-based subspace estimate is replaced by the HOSVD-based subspace

estimate [HRD08].

Secondly, we show that if the amplitudes of the signals have a special structure which we

refer to as strict-sense non-circularity (cf. Section 9.2.4), the array can be virtually doubled by

augmenting the rows of the measurement matrix by their conjugates [ZCW03]. The resulting

“NC ESPRIT”-type algorithms enjoy an enhanced estimation accuracy. Moreover, the maxi-

mum number of wavefronts which can be resolved jointly is doubled as well [HR04]. Compared

to our original publication [HR04], the discussion of NC ESPRIT-type algorithms shown in

Section 11.5 is more general since we show that we do not need to assume centro-symmetric

antenna arrays. Moreover, we show that NC Standard ESPRIT and NC Unitary ESPRIT

provide an identical performance.

Combining the ideas of Tensor-ESPRIT and NC ESPRIT is not a trivial task since the

augmentation performed for NC ESPRIT destroys the separable R-D sampling grid required

for Tensor-ESPRIT. We therefore consider a different form of augmentation in each of the

R dimensions of the tensor [RH09b] and show that they can be combined. Based on these

ideas we introduce NC Tensor-ESPRIT-type algorithms in Section 11.6 and demonstrate their

superior estimation accuracy numerically. Compared to [RH09b], Section 11.6 extends the
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11. ESPRIT-type parameter estimation schemes

available results by performing rigorous proofs and discussing non-centro-symmetric arrays as

well. Moreover, we also show that NC Standard Tensor-ESPRIT and NC Unitary Tensor-

ESPRIT provide an identical performance.

A final step to exploit more of the rich structure in the multi-dimensional data is the solution

of the shift invariance equations which are the basis for all ESPRIT-type methods. Since

they represent an overdetermined set of equations, we seek for an approximate solution that

minimizes a suitably defined error function. By modifying the unstructured (“Least Squares

(LS)”) error to take into account the shift invariance structure, we can define a “Structured

Least Squares (SLS)”-type cost function [Haa97b] which we show in Section 11.7. Since it

resembles a quadratic LS problem it can be solved iteratively via a sequence of linear LS

problems. We demonstrate that the tensor structure can be incorporated to enhance SLS even

further in the R-D case, resulting in a “Tensor-Structure Structured Least Squares (TS-SLS)”

algorithm [RH07b].

Section 11.8 provides numerical simulation results demonstrating the performance of the

various algorithms discussed in this Chapter. Finally, conclusions are drawn in Section 11.9.

11.2. R-D shift invariance

ESPRIT is based on a “shift invariance” in the array, which means that the array can be divided

into two subarrays that are identical except for a displacement, as illustrated in Figure 11.1.

Such a structure can be used to estimate the frequencies of R-dimensional harmonic signals

efficiently [HN98]. Since for a harmonic wave, a displacement incurs a phase offset proportional

to the frequency of the wave, frequency estimates are obtained by estimating the phase offsets

for all waves.

To estimate the frequencies of an R-D harmonic wave in all dimensions1 in this manner, we

require a shift invariance of the sampling grid in all R dimensions. This can be expressed via

tensor calculus in a natural way. Let Ai ∈ C
M1×M2...×MR be the “array steering tensor” of the

i-th wavefront as defined in (9.13). Then, the shift invariance of Ai in the r-th mode can be

expressed as

(Ai ×r J(r)1 ) ⋅ e⋅µ(r)i =Ai ×r J(r)2 , , r = 1,2, . . . ,R, (11.1)

where J
(r)
1 and J

(r)
2 ∈ R

M
(sel)
r ×Mr are the selection matrices which select the M

(sel)
r out of

1If the signal is harmonic only in R′ of the R dimensions (R′ < R), we can apply R′-D ESPRIT in these modes
and leave the others modes untouched. In this case the R − R′ “non-harmonic” dimensions simply provide
additional snapshots (which we collect in mode R + 1 in our data model for simplicity).
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Mr indices belonging to the first and the second subarray in the r-th mode, respectively.

Moreover, µ
(r)
i is the spatial frequency of the i-th wavefront in the r-th mode, cf. Example

9.2.1 or Example 9.2.2 introduced in Section 9.2.

For the special case of a uniform sampling grid introduced in Section 9.2, we choose J
(r)
1

and J
(r)
2 to

J
(r)
1 = [IMr−1 0(Mr−1)×1] J

(r)
2 = [0(Mr−1)×1 IMr−1] (11.2)

such that M
(sel)
r =Mr − 1, which corresponds to maximally overlapping subarrays.

The shift invariance relation for a single source from (11.1) can be extended to consider all

d sources jointly. We obtain [HRD08]

A ×r J(r)1 ×R+1 Φ(r) =A ×r J(r)2 , (11.3)

where A = [A1 R+1A2 R+1 . . . R+1Ad] = IR+1,d ×1A(1) . . .×RA(R) ∈ CM1×M2...×MR×d is the

array steering tensor (cf. (9.12) and (9.15)) and Φ(r) = diag{[e⋅µ(r)1 , . . . , e⋅µ
(r)
d ]} ∈ Cd×d.

Note that a matrix-based equivalent of (11.3) in terms of the array steering matrix A =[A]T(R+1) is found by considering the transpose of the (R + 1)-mode unfolding of (11.3). Us-

ing (4.5) we obtain

J̃
(r)
1 ⋅A ⋅Φ(r) = J̃(r)2 ⋅A where (11.4)

J̃
(r)
n = (IM1

⊗ . . .⊗ IMr−1)⊗ J(r)n ⊗ (IMr+1 ⊗ . . .⊗ IMR
) , n = 1,2, (11.5)

which coincides with the matrix-based shift invariance equations derived in [HN98].

In the 1-D case, the shift invariance equations simplify into

J1 ⋅A ⋅Φ = J2 ⋅A. (11.6)

Figure 11.1 shows the 2-D shift invariance of the 5 × 4 separable 2-D sampling grid that

was already introduced in Figure 9.3b. The left-hand side shows how to choose the selection

matrices J
(1)
1 and J

(1)
2 for the first dimension (horizontal) and the right-hand side shows how

to choose the selection matrices J
(2)
1 and J

(2)
2 for the second dimension (vertical), i.e.,

J
(1)
1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
J
(1)
2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
J
(2)
1 =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎦ J
(2)
2 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ .
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J̃
(1)
1

J̃
(1)
2

J̃
(2)
1 J̃

(2)
2

Figure 11.1.: 2-D shift invariance for the 5 × 4 separable 2-D sampling grid from Figure 9.3b.
Left: subarrays for the first (horizontal) dimension, right: subarrays for the second (vertical)
dimension.

Moreover, J̃
(1)
n = J

(1)
n ⊗ I4 and J̃

(2)
n = I5 ⊗ J(2)n for n = 1,2.

11.3. R-D matrix-based ESPRIT

11.3.1. R-D Standard ESPRIT

To solve the shift invariance equations (11.4) for the matrices Φ(r), we need to eliminate

the unknown array steering matrix A. This is achieved by observing that the columns of A

represent a basis for the column space ofX0 and hence each column of A can be expressed as a

linear combination of the columns of the matrix of the d dominant left singular vectors of X0,

which we denote as U s (cf. Section 10.1). Mathematically speaking, we can write A = U s ⋅ T
where T ∈ Cd×d is a full-rank matrix which contains the coefficients of the expansion of the

columns ofA with respect to the basis U s. In practice, we estimate U s via an SVD of the noisy

measurements X. The estimate Û s satisfies A ≈ Û s ⋅T . Inserting this relation into (11.4), we

have

J̃
(r)
1 ⋅ Û s ⋅ T ⋅Φ(r) ≈ J̃(r)2 ⋅ Û s ⋅ T

J̃
(r)
1 ⋅ Û s ⋅ T ⋅Φ(r) ⋅ T −1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ψ
(r)

≈ J̃
(r)
2 ⋅ Û s, (11.7)
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which is an overdetermined set of equations forΨ(r). An unstructured “Least Squares” solution

of (11.7) for Ψ(r) is obtained by (for a structured solution, cf. Section 11.7)

Ψ̂
(r)
LS = argmin

Ψ

∥J̃(r)1 ⋅ Û s ⋅Ψ − J̃(r)2 ⋅ Û s∥2
F

= (J̃(r)1 ⋅ Û s)+ ⋅ J̃(r)2 ⋅ Û s. (11.8)

Since Ψ(r) = T ⋅ Φ(r) ⋅ T −1 represents an EigenValue Decomposition (EVD), we obtain an

estimate of Φ(r) via an EVD of Ψ̂
(r)
LS . To ensure the correct pairing across the dimensions, the

matrices Φ̂
(r)

should be estimated via a joint EVD of Ψ̂
(r)
LS (e.g., via [FG06]). Algorithm 3

summarizes the R-D Standard ESPRIT procedure.

Algorithm 3 Summary of R-D Standard ESPRIT using Least Squares.

1. Estimate the signal subspace Û s via the truncated SVD of the observation matrix X ∈
C
M×N .

2. Solve the overdetermined shift invariance equations

J̃
(r)
1 ⋅ Û s ⋅Ψ(r) ≈ J̃(r)2 ⋅ Û s

for the matrices Ψ(r) for r = 1,2, . . . ,R via the method of Least Squares (LS).

3. Compute the eigenvalues λ̂
(r)
i for i = 1,2, . . . , d of Ψ̂

(r)
jointly for all r = 1,2, . . . ,R, e.g.,

via the joint diagonalization scheme proposed in [FG06]. Recover the correctly paired

frequencies µ̂
(r)
i via µ̂

(r)
i = arg {λ̂(r)i }.

11.3.2. R-D Unitary ESPRIT

As discussed in Section 10.3, if the array is centro-symmetric (cf. examples given in Sec-

tion 9.2.3) we can exploit the fact that A and ΠM ⋅A∗ span the same column space. Therefore,

the measurementsX ∈ CM×N can be augmented by ΠM ⋅X∗ along the columns without chang-

ing the column space, as shown in (10.12). This creates another set of N “virtual snapshots”.

Moreover, this step allows to decorrelate two coherent sources2 . Finally, the redundancies in

the resulting augmented measurement matrix can be used to transform the complex-valued

measurement in the real-valued domain and perform the entire processing using real-valued

2The decorrelation relies on phase offsets between the sources and hence there are pathological cases were it
fails, e.g., sources arriving in-phase (which means that their complex correlation coefficient is equal to 1 or -1)
at an array where the phase reference is chosen in the center.
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additions and multiplications only. The details of the derivation are found in [HN95, HN98].

Here we only provide a summary in Algorithm 4.

Algorithm 4 [HN98] Summary of R-D Unitary ESPRIT using Least Squares.

1. Estimate the real-valued signal subspace Ês via the truncated SVD of the transformed
real-valued observation matrix T (X) =QH

M ⋅[X ΠMX
∗ΠN ] ⋅Q2N ∈ R

M×2N , where Qp

is a unitary p × p left-Π-real matrix (i.e., Πp ⋅Q∗p =Qp), cf. Section 10.3.

2. Solve the overdetermined shift invariance equations

K̃
(r)
1 ⋅ Ês ⋅Υ(r) ≈ K̃(r)2 ⋅ Ês

for the matrices Υ(r) for r = 1,2, . . . ,R via the method of Least Squares (LS), where

K̃
(r)
1 and K̃

(r)
2 are the transformed selection matrices given by

K̃
(r)
1 = 2 ⋅Re{QH

M
(sel)
r ⋅M/Mr

⋅ J̃(r)2 ⋅QM} (11.9)

K̃
(r)
2 = 2 ⋅ Im{QH

M
(sel)
r ⋅M/Mr

⋅ J̃(r)2 ⋅QM} . (11.10)

3. Compute the eigenvalues ω̂
(r)
i for i = 1,2, . . . , d of Υ̂

(r)
jointly for all r = 1,2, . . . ,R, e.g.,

via the joint diagonalization scheme proposed in [FG06] or via the Simultaneous Schur

Decomposition proposed in [HN98]. Recover the correctly paired frequencies µ̂
(r)
i via

µ̂
(r)
i = 2 ⋅ arctan(ω̂(r)i ).

11.4. R-D Tensor-ESPRIT-type algorithms

11.4.1. R-D Standard Tensor-ESPRIT

As we have demonstrated in Section 11.2, the use of tensor algebra leads to a simplified and

more natural formulation of the R-D shift invariance equations, since the artificial stacking

operation and its consequences (such as the introduction of many Kronecker products) are

avoided. Based on this idea, an R-D Standard ESPRIT algorithm can be formulated entirely in

terms of tensors [HRD08]. As we show in the sequel, this enhances the estimation accuracy due

to the improved tensor-based subspace estimate shown in Section 10.2. Moreover, it enables us

to find tensor-based solutions to the overdetermined shift invariance equations [RH07b] which

we discuss in Section 11.7.
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We first eliminate the unknown array steering tensor from the shift invariance equations (11.3)

by virtue of the signal subspace tensor (10.10). This step is facilitated by the following relation

between A and U [s].

Theorem 11.4.1. [HRD08] The array steering tensor A and the signal subspace tensor U [s]
are related via

A = U [s] ×R+1 T̄ , (11.11)

where T̄ ∈ Cd×d is a non-singular transform matrix.

Proof. Firstly, note that the true signal subspace is defined as the space spanned by the columns

ofA. Moreover, we haveA = [A]T(R+1) from (9.17). Let us compute the transpose of the (R+1)-
mode unfolding of (11.11). Since [A]T(R+1) = A, (11.11) is equivalent to A = [U [s]]T(R+1) ⋅ T̄T

.

We also know that [U [s]]T(R+1) = U s ⋅ T̃ , since [U [s]]T(R+1) and U s span the same column space

(cf. Corollary D.3.2). Likewise, we have A = U s ⋅ T (cf. Section 11.3.1). Combining the last

two relations we finally obtain A = [U [s]]T(R+1) ⋅ T̃ −1 ⋅ T which coincides with the transpose of

the (R + 1)-mode unfolding of (11.11) for T̄
T
= T̃

−1 ⋅ T .
Note that (11.11) was first stated by us in [HRD08], however, there it was not proven.

Essentially, Theorem 11.4.1 shows that the row spaces of the (R + 1)-mode unfoldings of A

and U [s] agree. At the same time, if we compute any r-mode unfolding of (11.11) it becomes

apparent that all the r-spaces of A and U [s] coincide for r = 1,2, . . . ,R. Equation (11.11)

allows to eliminate the unknown array steering tensor from the shift invariance equations,

replacing it by the estimated signal subspace tensor Û
[s]

via A ≈ Û
[s] ×R+1 T̄ . We then obtain

Û
[s] ×r J(r)1 ×R+1 Ψ(r) ≈ Û [s] ×r J(r)2 , (11.12)

where3 Ψ(r) = T̄ −1 ⋅Φ(r) ⋅ T̄ , r = 1,2, . . . ,R follows by applying identity (4.7) for repeated

n-mode products. Note that due to (4.7), the order of the matrices in the definition of Ψ(r) is
reversed compared to the matrix case shown in (11.7).

The next step is the solution of the overdetermined sets of equations (11.12) to yield the

estimates Ψ̂
(r)

. The following theorem shows how a Least Squares solution to (11.12) can be

obtained in closed-form.

3 Note that this is not exactly the same as the Ψ
(r) defined in Section 11.3.1, since the matrix of eigenvectors

is different. However, since we are only interested in the eigenvalues, this difference is irrelevant, and hence we
use the same variable for brevity.
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Theorem 11.4.2. [HRD08] The Least Squares solution of the tensor-valued shift invariance

equation (11.12) has the following closed-form solution

Ψ̂
(r)
LS =argmin

Ψ

∥Û [s] ×r J(r)1 ×R+1 Ψ − Û [s] ×r J(r)2 ∥2
H

(11.13)

⇒ Ψ̂
(r)T
LS =(J̃(r)1 ⋅ [Û [s]]T(R+1))

+ ⋅ J̃(r)2 ⋅ [Û [s]]T(R+1) . (11.14)

Proof: cf. Appendix D.4.

Comparing (11.14) with (11.8) we see that the Least Squares solution of the matrix-based

shift invariance equations for R-D Standard ESPRIT and the tensor-based shift invariance

equations for R-D Standard Tensor-ESPRIT differ only in the choice of the subspace. Contem-

plating that the remaining steps (joint eigendecomposition of Ψ̂
(r)
LS to recover the frequencies

µ
(r)
i ) are also the same, we can conclude that R-D Standard Tensor-ESPRIT is algebraically

equivalent to R-D Standard ESPRIT if we replace the SVD-based subspace estimate Û s by

the HOSVD-based subspace estimate [Û [s]]T(R+1).
11.4.2. R-D Unitary Tensor-ESPRIT

In the previous section we have seen that tensor calculus allows to derive a tensor-valued

version of R-D Standard ESPRIT and that it is algebraically equivalent to matrix-based R-D

Standard ESPRIT except for using the enhanced HOSVD-based subspace estimate.

We can proceed in a similar manner for R-D Unitary Tensor-ESPRIT. As discussed in

Section 10.3, if the array is centro-symmetric, we can apply forward-backward averaging to

the measurement tensor X and then transform the resulting tensor onto the real-valued do-

main [HRD08] to lower the computational complexity. We can then estimate the signal sub-

space tensor via a truncated HOSVD of the transformed tensor T (X ) ∈ RM1×...×MR×2N shown

in (10.15), i.e.,

T (X ) ≈ Ŝ[s]T ×1 Ê[s]1 . . . ×R Ê[s]R ×R+1 Ê[s]R+1
⇒ Ê[s] = Ŝ[s]T ×1 Ê[s]1 . . . ×R Ê[s]R ×R+1 Σ[s]−1R+1 (11.15)

where Ê
[s]
∈ R

M1×...×MR×d. Applying the real-valued transformation in (10.15) to the shift

invariance equations (11.12) yields the following transformed equations

Ê
[s] ×rK(r)1 ×R+1 Υ(r) ≈ Ê[s] ×rK(r)2 , (11.16)
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where K
(r)
1 = 2 ⋅ Re{QH

M
(sel)
r

⋅ J(r)2 ⋅QMr
} and K

(r)
2 = 2 ⋅ Im{QH

M
(sel)
r

⋅ J(r)2 ⋅QMr
}. The real-

valued shift invariance equations in (11.16) have the same algebraic form as the shift invariance

equations for R-D Standard Tensor-ESPRIT shown in (11.12). Consequently, using similar

arguments as in Theorem 11.4.2 we find the closed-form Least Squares solution to (11.16) via

Υ̂
(r)T
LS = (K̃(r)1 ⋅ [Ê[s]]T(R+1))

+ ⋅ K̃(r)2 ⋅ [Ê[s]]T(R+1) . (11.17)

Note that as for R-D Standard Tensor-ESPRIT, for R-D Unitary Tensor-ESPRIT we again

obtain a solution which is algebraically equivalent to the matrix-based R-D Unitary ESPRIT

algorithm [HN98]. A slight difference is that the transformed selection matrices K̃
(r)
1 and K̃

(r)
2

used in (11.17) are given by [HRD08]

K̃
(r)
n = (IM1

⊗ . . .⊗ IMr−1)⊗K(r)n ⊗ (IMr+1 ⊗ . . .⊗ IMR
) , n = 1,2, (11.18)

and hence, they coincide with the matrices K̃
(r)
n defined in Algorithm 4 only if we choose the

unitary left-Π-real matrices QM and Q
M
(sel)
r ⋅M/Mr

according to

QM =QM1
⊗QM2

⊗ . . .⊗QMr
⊗ . . .⊗QMR

(11.19)

Q
M
(sel)
r ⋅M/Mr

=QM1
⊗QM2

⊗ . . .⊗Q
M
(sel)
r
⊗ . . .⊗QMR

, (11.20)

where the smaller QMr
are arbitrary unitary left-Π-real matrices. Moreover, the matrix QM

used in the transformation T (X) from (10.13) should also be chosen as in (11.19). However,

since the particular choice of the left-Π-real matrices is irrelevant for the performance of

R-D Unitary ESPRIT we again conclude that R-D Unitary ESPRIT and R-D Unitary Tensor-

ESPRIT are algebraically equivalent except for the fact that the SVD-based subspace estimate

Es is replaced by the HOSVD-based subspace estimate Ê
[s]
.

11.5. R-D NC ESPRIT-type algorithms

11.5.1. R-D NC Standard ESPRIT

R-D NC Standard ESPRIT is applicable if the amplitudes si[n] for i = 1,2, . . . , d represent

samples from a strict-sense non-circular distribution, as described in Section 9.2.4. This implies

that they can be expressed as si[n] = eϕi ⋅ s0,i[n], where s0,i[n] ∈ R and ϕi does not change
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11. ESPRIT-type parameter estimation schemes

with time (n). For the matrix of amplitudes S ∈ Cd×N we can then write

S =Ψ ⋅S0, where Ψ = diag {[eϕ1 , . . . , eϕd]} (11.21)

and S0 ∈ R
d×N , cf. (9.22).

Based on this assumption we can define an augmented measurement matrixX(nc) as [CWS01,

HR04]4

X(nc) =
⎡⎢⎢⎢⎢⎣

X

ΠM ⋅X∗
⎤⎥⎥⎥⎥⎦ . (11.22)

Inserting X =A ⋅S +N and S =Ψ ⋅S0, we can rewrite (11.22) into

X(nc) =
⎡⎢⎢⎢⎢⎣

A ⋅S
ΠM ⋅A∗ ⋅S∗

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣

N

ΠM ⋅N∗
⎤⎥⎥⎥⎥⎦ (11.23)

=

⎡⎢⎢⎢⎢⎣
A

ΠM ⋅A∗ ⋅Ψ∗ ⋅Ψ∗
⎤⎥⎥⎥⎥⎦ ⋅S +

⎡⎢⎢⎢⎢⎣
N

ΠM ⋅N∗
⎤⎥⎥⎥⎥⎦ (11.24)

=A(nc) ⋅S +N (nc), (11.25)

since S∗ =Ψ∗ ⋅S0 andΨ∗ ⋅S = S0. Equation (11.25) shows that the desired signal component of

the augmented X(nc) can be factorized into an extended array steering matrix A(nc) ∈ C2M×d

and the original matrix of amplitudes S ∈ Cd×N . A remarkable property ofA(nc) is summarized

in the following theorem:

Theorem 11.5.1. If the array steering matrix A is shift-invariant, i.e., J1 ⋅A ⋅Φ = J2 ⋅A,

where J1 and J2 ∈ R
M(sel)

×M are the selection matrices for the first and the second subarray,

then A(nc) satisfies

J
(nc)
1 ⋅A(nc) ⋅Φ = J(nc)2 ⋅A(nc) where (11.26)

J
(nc)
1 =

⎡⎢⎢⎢⎢⎣
J1 0

0 ΠM(sel) ⋅ J2 ⋅ΠM

⎤⎥⎥⎥⎥⎦ and J
(nc)
2 =

⎡⎢⎢⎢⎢⎣
J2 0

0 ΠM(sel) ⋅ J1 ⋅ΠM

⎤⎥⎥⎥⎥⎦ ∈ R
2M(sel)

×2M .

(11.27)

Proof: cf. Appendix D.5.

The shift invariance in (11.26) was already used in [ZCW03] and by us in [HR04] for the

4[CWS01] defines X(nc) for Root-MUSIC without the matrix ΠM . The formulation in (11.22) we use here was
first proposed by us in [HR04] to facilitate the real-valued implementation for Unitary ESPRIT.
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11.5. R-D NC ESPRIT-type algorithms

special case of a ULA and the special case of a centro-symmetric array, respectively. Theorem

11.5.1 is more general since it does need further assumptions about the array except for the

shift invariance. Note that Theorem 11.5.1 implies that via the augmentation we have created

a virtual array of 2M sensors with two shift invariant subarrays containing 2M (sel) sensors, as
visualized in Figure 11.2. Consequently, this step doubles the number of sources that can be

resolved simultaneously as well. Based on the shift invariance equation shown in (11.26) we

can define an R-D Standard ESPRIT-type algorithm following the same steps as before. The

resulting R-D NC Standard ESPRIT algorithm is summarized in Algorithm 5. A 1-D version

of it was first proposed in [ZCW03].

Algorithm 5 Summary of R-D NC Standard ESPRIT using Least Squares.

1. Estimate the augmented signal subspace Û
(nc)
s ∈ R

2M×d via the truncated SVD of the
augmented observation matrix X(nc) ∈ C2M×N .

2. Solve the overdetermined shift invariance equations

J̃
(nc)(r)
1 ⋅ Û (nc)s ⋅Ψ(r) ≈ J̃(nc)(r)2 ⋅ Û (nc)s

for the matrices Ψ(r) for r = 1,2, . . . ,R via the method of Least Squares (LS), where

J̃
(nc)(r)
1 and J̃

(nc)(r)
2 are defined as (cf. (11.27))

J̃
(nc)(r)
n = IM1⋅...⋅Mr−1 ⊗ J(nc)(r)n ⊗ IMr+1⋅...⋅MR

(11.28)

J
(nc)(r)
1 =

⎡⎢⎢⎢⎢⎣
J
(r)
1 0

0 Π
M
(sel)
r
⋅ J(r)2 ⋅ΠMr

⎤⎥⎥⎥⎥⎦ (11.29)

J
(nc)(r)
2 =

⎡⎢⎢⎢⎢⎣
J
(r)
2 0

0 Π
M
(sel)
r
⋅ J(r)1 ⋅ΠMr

⎤⎥⎥⎥⎥⎦ . (11.30)

3. Compute the eigenvalues λ̂
(r)
i for i = 1,2, . . . , d of Ψ̂

(r)
jointly for all r = 1,2, . . . ,R, e.g.,

via the joint diagonalization scheme proposed in [FG06]. Recover the correctly paired

frequencies µ̂
(r)
i via µ̂

(r)
i = arg {λ̂(r)i }.

11.5.2. R-D NC Unitary ESPRIT

The extension of R-D NC Standard ESPRIT to R-D NC Unitary ESPRIT [HR04] is again

quite straightforward. There are three remarkable things to note here though. Firstly, while

125
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R-D Unitary ESPRIT requires the original array to be centro-symmetric, this is not required

for R-D NC Unitary ESPRIT. The reason is that even if A is not centro-symmetric, the

augmented array steering matrix A(nc) is always centro-symmetric5.

The second surprising result is that forward-backward averaging has no effect on the per-

formance. That means if we apply FBA to X(nc) the subspace estimate Û s remains unaltered

since

X(nc)(fba) ⋅ (X(nc)(fba))H = 2 ⋅X(nc) ⋅ (X(nc))H (11.31)

where X(nc)(fba) = [X(nc) Π2M ⋅X(nc)∗ ⋅ΠN]. Note that (11.31) has two important conse-

quences. Firstly, it shows that the performance of R-D NC Standard ESPRIT and R-D NC

Unitary ESPRIT is asymptotically identical (cf. Section 12.4.4 where it is shown that the real-

valued transformation has no effect on the asymptotical performance)6. Secondly, it shows

that unlike Unitary ESPRIT, NC Unitary ESPRIT cannot handle two coherent sources: FBA

has no decorrelation effect as shown in (11.31) and the row-wise augmentation applied for

NC ESPRIT has no decorrelation effect either (as evident from (11.25)). We demonstrate this

effect numerically in the simulation results in Section 11.8.3 (cf. Figure 11.10).

The third surprising result is that applying forward-backward averaging and the real-valued

transformation, the resulting transformed measurement matrix takes the following simple form

T (X(nc)) = 2 ⋅ ⎡⎢⎢⎢⎢⎣
Re{X} 0M×N

Im{X} 0M×N

⎤⎥⎥⎥⎥⎦ , (11.32)

if the sparse left-Π-real matrices Q
(s)
p proposed in [HN95] (cf. Appendix A.2) are used for

the real-valued transformation. Since the zero block matrices and the factor 2 in front can be

skipped, we conclude that the signal subspace can be estimated directly from the matrix where

the real part of X and the imaginary part of X are stacked on top of each other. Based on

this observation, an R-D NC Unitary ESPRIT algorithm can be derived, which is summarized

in Algorithm 6.

5In the special case where the array is centro-symmetric, we have J2 =ΠM(sel) ⋅J1 ⋅ΠM and hence the augmented

selection matrices simplify into J
(nc)
n = I2 ⊗ Jn, n = 1,2.

6Combining the first two observations, it becomes clear that there is actually no need for a “Standard” version
of R-D NC Unitary ESPRIT. It is included in this thesis for the sake of completeness only.
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Algorithm 6 [HR04] Summary of R-D NC Unitary ESPRIT using Least Squares.

1. Estimate the augmented real-valued signal subspace Ê
(nc)
s ∈ C

2M×d via the truncated
SVD of the stacked observation [Re{X}T , Im{X}T]T ∈ R2M×N .

2. Solve the overdetermined shift invariance equations

K̃
(nc)(r)
1 ⋅ Ê(nc)s ⋅Υ(r) ≈ K̃(nc)(r)2 ⋅ Ê(nc)s

for the matrices Υ(r) for r = 1,2, . . . ,R via the method of Least Squares (LS), where

K̃
(nc)(r)
1 = 2 ⋅Re{QH

M
(sel)
r ⋅M/Mr

⋅ J̃(nc)(r)2 ⋅QM} (11.33)

K̃
(nc)(r)
2 = 2 ⋅ Im{QH

M
(sel)
r ⋅M/Mr

⋅ J̃(nc)(r)2 ⋅QM} (11.34)

and J̃
(nc)(r)
n are defined in (11.28).

3. Compute the eigenvalues ω̂
(r)
i for i = 1,2, . . . , d of Υ̂

(r)
jointly for all r = 1,2, . . . ,R, e.g.,

via the joint diagonalization scheme proposed in [FG06] or via the Simultaneous Schur

Decomposition proposed in [HN98]. Recover the correctly paired frequencies µ̂
(r)
i via

µ̂
(r)
i = 2 ⋅ arctan(ω̂(r)i ).

127



11. ESPRIT-type parameter estimation schemes

11.6. R-D NC Standard Tensor-ESPRIT and R-D NC Unitary

Tensor-ESPRIT

In Section 11.4 we have shown how we can exploit the multidimensional structure of the

R-D harmonic retrieval problem by virtue of tensor algebra, giving rise to the R-D Tensor-

ESPRIT-type algorithms. On the other hand, in Section 11.5 we have shown how strict-sense

non-circularity of the amplitudes (source symbols) can be exploited by virtue of widely linear

signal processing, giving rise to NC ESPRIT-type algorithms. This sparks the question whether

both approaches can be combined for the case of R-D harmonic retrieval with strict-sense non-

circular source signals.

However, combining the two approaches is not a trivial task. In fact, the augmentation that

was applied for R-D NC ESPRIT-type algorithms destroys the R-D separable sampling grid

structure required for R-D Tensor-ESPRIT-type algorithms. This is exemplified in Figure 11.2,

where we show the virtual 18-sensor array, which results from performing the augmentation

for matrix-based NC ESPRIT-type algorithms to a 3 × 3 URA. The additional virtual URA

is flipped in both dimensions but neither augmented vertically nor horizontally. Hence, the

resulting array is not a separable 2-D sampling grid as defined in Section 9.2.3, since we cannot

express it as the outer product of 1-D sampling grids.

Consequently, in order to exploit both, the R-D structure and the strict-sense non-circularity

at the same time, a tensor-compliant way of exploiting non-circularity is required. As shown

in [RH09b], this is accomplished by performing the augmentation along the individual modes

separately (in the 2-D example along the rows and along the columns) and exploiting all these

augmentations jointly.

To this end, let the r-mode augmented measurement tensor be given by

X (nc,r) = [X r X
∗ ×1 ΠM1

. . . ×R ΠMR
] ∈ CM1×...×Mr−1×2Mr×Mr+1×...×MR×N . (11.35)

This tensor admits a factorization similar to (11.25), i.e.,

X (nc,r) =A(nc,r) ×R+1 ST +N (nc,r), (11.36)

where the r-mode augmented array steering tensor A(nc,r) is given by

A(nc,r) = [A r A
∗ ×1 ΠM1

. . . ×R ΠMR
×R+1 (Ψ∗ ⋅Ψ∗)]

∈ C
M1×...×Mr−1×2Mr×Mr+1×...×MR×d. (11.37)
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A

ΠM ⋅A∗

ΠM ⋅A∗

Figure 11.2.: Virtually doubled 2-D array after matrix-based augmentation of the measure-
ments. The virtually doubled 3 × 3 URA is augmented by a second URA flipped in both
dimensions. The resulting array is not a separable 2-D sampling grid.

The R-D NC Tensor-ESPRIT-type algorithms are based on the shift invariance of A(nc,r),
which is established in the following theorem:

Theorem 11.6.1. The r-mode augmented array steering tensor A(nc,r) defined in (11.37)

obeys the following shift invariance equation

A(nc,r) ×r J(nc)(r)1 ×R+1 Φ(r) =A(nc,r) ×r J(nc)(r)2 (11.38)

for r = 1,2, . . .R, where J
(nc)(r)
1 and J

(nc)(r)
2 are defined in (11.29) and (11.30), respectively.

Proof: cf. Appendix D.6.

Note that the shift invariance relation in (11.38) was used by us in [RH09b] to derive the R-D

NC Unitary Tensor-ESPRIT algorithms. However, due to space limitations, a proof for it was

not included in [RH09b]. In other words, Theorem 11.6.1 shows that the r-mode augmented

array steering tensor is shift invariant with a “doubled” number of elements in the r-th mode7.

Therefore, the idea to exploit non-circularity and the R-D tensor structure jointly is to use

all r-mode augmentations together, i.e., to extract estimates for Φ(r) only from X (nc,r) for

r = 1,2, . . . ,R.

In order accomplish this goal, the unknown array steering tensors need to be replaced by es-

timates of appropriate signal subspace tensors. This is accomplished by virtue of the following

theorem:

7Note that A(nc,r) is shift invariant in the other modes q = 1,2, . . . ,R, q ≠ r only if the array is centro-

symmetric in the q-th mode, i.e., ΠMq
⋅A(q)

∗

and A(q) span the same column space. However, this additional
shift invariance is not needed for R-D NC Tensor-ESPRIT type algorithms.
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Theorem 11.6.2. Let the truncated HOSVD of the noise-free r-mode augmented measurement

tensor X
(nc,r)
0 be given by X

(nc,r)
0 = S[s](r) ×1 U [s](r)1 . . . ×R U [s](r)R ×R+1 U [s](r)R+1 . Define the r-

mode augmented signal subspace tensor U [s](r) via

U [s](r) = S[s](r) ×1 U [s](r)1 . . . ×R U [s](r)R ×R+1 Σ[s](r)−1R+1 (11.39)

be the signal subspace tensor originating from the r-mode augmented measurement tensor

X (nc,r). Then, the following set of shift invariance equations is satisfied

U [s](r) ×r J(nc)(r)1 ×R+1 Ψ(r) = U [s](r) ×r J(nc)(r)2 r = 1,2, . . . ,R (11.40)

where Ψ(r) = T ⋅Φ(r) ⋅ T −1, i.e., T is not a function of r.

Proof: cf. Appendix D.7.

Note that the shift invariance relation in (11.40) was used by us in [RH09b] to derive the R-D

NC Unitary Tensor-ESPRIT algorithms. However, due to space limitations, a proof for it was

not included in [RH09b]. Moreover, we were assuming centro-symmetric arrays in [RH09b].

It is important to note that, as highlighted in Appendix D.7, if the array is not centro-

symmetric, the n-ranks of A(nc,r) can exceed d, which must be taken into account when

computing the truncated HOSVD for U [s](r). Since they are equal to 2d in the worst case, it

is safe to truncate the HOSVD to 2d in the first R modes (of course, we still truncate to d in

mode R + 1).
The most important part of this theorem is that T is not a function of r, i.e., all Ψ(r)

still have a common set eigenvectors. This is important since the automatic pairing in R-D

ESPRIT-type algorithms is based on this fact.

The R-D NC Standard Tensor-ESPRIT follows naturally from (11.40). It is summarized in

Algorithm 7.

The extension of R-D NC Standard Tensor-ESPRIT to R-D NC Unitary Tensor-ESPRIT

is again quite straightforward. In fact, many of the results from the matrix case (cf. Section

11.5.2) carry over to the tensor case. Firstly, the augmented array steering tensor A(nc,r)
is centro-symmetric even if the original array steering tensor A is not centro-symmetric8.

Secondly, Forward-Backward Averaging has no effect on the augmented tensor X (nc,r), i.e.,

[X (nc,r)(fba)]T(R+1) ⋅ ([X (nc,r)(fba)]T(R+1))
H

= 2 ⋅ [X (nc,r)]T(R+1) ([X (nc,r)]T(R+1))
H

, (11.41)

8The condition on centro-symmetry ΠM ⋅A∗ = A ⋅∆ for the matrix case is expressed in tensor notation as

A
∗

R

⨉
r=1

rΠMr
=A ×R+1 ∆, where ∆ is a unitary diagonal matrix.
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Algorithm 7 Summary of R-D NC Standard Tensor-ESPRIT using Least Squares.

1. Estimate the augmented signal subspace tensors Û
[s](r)

∈ C
M1×...×2Mr×...×MR×d via

the truncated HOSVD of the r-mode augmented observation tensors X (nc,r) ∈
C
M1×...×Mr−1×2Mr×Mr+1×...×MR×N following (11.39) for r = 1,2, . . . ,R.

2. Solve the overdetermined shift invariance equations

Û
[s](r) ×r J(nc)(r)1 ×R+1 Ψ̂(r) ≈ Û [s](r) ×r J(nc)(r)2

for the matrices Ψ̂
(r)

for r = 1,2, . . . ,R via the method of Least Squares (LS).

3. Compute the eigenvalues λ̂
(r)
i for i = 1,2, . . . , d of Ψ̂

(r)
jointly for all r = 1,2, . . . ,R, e.g.,

via the joint diagonalization scheme proposed in [FG06]. Recover the correctly paired

frequencies µ̂
(r)
i via µ̂

(r)
i = arg {λ̂(r)i }.

where X (nc,r)(fba) = [X (nc,r) R+1 X
(nc,r)∗ ×1 ΠM1

. . . ×R ΠMR
×R+1 ΠN]. As in the matrix

case, this shows that the performance of R-D NC Standard Tensor-ESPRIT is identical to

R-D NC Unitary Tensor-ESPRIT and hence the latter is clearly preferable due to the lower

computational complexity. Thirdly, in the matrix case, we had the result that the transformed

real-valued measurement matrix has a very simple form (cf. (11.32)). Applying the tensor-

based forward-backward averaging and the corresponding real-valued transformation which

was introduced in (10.15), we arrive at a simple direct form of the transformed measurement

tensor as well. It is summarized in the following theorem.

Theorem 11.6.3. [RH09b] Applying forward-backward averaging and the real-valued trans-

formation to the r-mode augmented measurement tensor X (nc,r), we obtain

T (X (nc,r)) = [X (nc,r) R+1 (X (nc,r)∗ ×1 ΠM1
. . . ×R ΠMR

×R+1 ΠN)] ×1QH
M1

. . . ×RQH
MR
×R+1QH

2N

= [[2 ⋅Re{X̄ (r)} r 2 ⋅ Im{X̄ (r)}] R+1 [OM1×...×MR×N r OM1×...×MR×N ]]
where X̄

(r)
= X ×1QH

M1
. . . ×r−1QH

Mr−1
×r+1QH

Mr+1
. . . ×R QH

MR
and Qp are unitary left-Π-real

matrices.

Proof: cf. Appendix D.8.

This simplified form of the real-valued transformed measurement tensor was already shown

in [RH09b]. However, due to space limitations, a proof for it was not included there.
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Note that the zero entries in T (X (nc,r)) and the factor 2 can be skipped as they have

no influence on the signal subspace estimate. Therefore, we can replace T (X (nc,r)) by the

following simplified version

T̄ (X (nc,r)) = [Re{X̄ (r)} r Im{X̄ (r)}] ∈ RM1×...×Mr−1×2Mr×Mr+1×...×MR×N . (11.42)

Based on this result, the R-D NC Unitary Tensor-ESPRIT algorithm follows straightforwardly.

It is summarized in Algorithm 8.

Algorithm 8 [RH09b] Summary of R-D NC Unitary Tensor-ESPRIT using Least Squares.

1. Estimate the real-valued augmented signal subspace tensors Ê
[s](r)

∈ R
M1×...×2Mr×...×MR×d

via the truncated HOSVD of the transformed r-mode augmented observation tensorsT̄ (X (nc,r)) ∈ RM1×...×Mr−1×2Mr×Mr+1×...×MR×N shown in (11.42) for r = 1,2, . . . ,R.

2. Solve the overdetermined shift invariance equations

Ê
[s](r) ×rK(nc)(r)1 ×R+1 Υ̂(r) ≈ Ê[s](r) ×rK(nc)(r)2

for the matrices Υ̂
(r)

for r = 1,2, . . . ,R via the method of Least Squares (LS), where

K
(nc)(r)
1 = 2 ⋅Re{QH

M
(sel)
r

⋅ J(nc)(r)2 ⋅QMr
} (11.43)

K
(nc)(r)
2 = 2 ⋅ Im{QH

M
(sel)
r

⋅ J(nc)(r)2 ⋅QMr
} (11.44)

and J
(nc)(r)
n are defined in (11.29) and (11.30).

3. Compute the eigenvalues ω̂
(r)
i for i = 1,2, . . . , d of Υ̂

(r)
jointly for all r = 1,2, . . . ,R, e.g.,

via the joint diagonalization scheme proposed in [FG06] or via the Simultaneous Schur

Decomposition proposed in [HN98]. Recover the correctly paired frequencies µ̂
(r)
i via

µ̂
(r)
i = 2 ⋅ arctan(ω̂(r)i ).

11.7. Structured Least Squares

So far, the various ESPRIT-type algorithms we have discussed are all based on LS, i.e., the

overdetermined shift invariance equations are solved using LS only. While the LS solution is

closed-form and simple to implement, it is in general suboptimal. The reason for this is that

an LS solution to an overdetermined set of equations, say, A ⋅x ≈ b can always be interpreted
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as finding a projection of the vector b onto the subspace spanned by the columns of A. In that

respect, one inherently assumes that A is perfectly known and the only error lies on the right-

hand side of the equation, i.e., we find an error term ∆b such that A ⋅x = b+∆b and ∥∆b∥2 is

minimized. However, in the case of a shift invariance equation we have J1Û sΨ ≈ J2Û s, which

we solve for Ψ. Consequently, the error clearly lies on both sides of the equation as neither

“A” (J1Û s) nor “b” (J2Û s) are perfectly known.

This observation has inspired the use of the Total Least Squares (TLS) procedure for solving

the invariance equation [RK87]. TLS allows for errors in all variables, hence one error term

for J1Û s and another error term for J2Û s is explicitly computed with the goal to align their

subspaces until an exact solution for Ψ exists.

The drawback of TLS is that the error terms for J1Û s and J2Û s are found independently

of each other. However, as long as the two subarrays used for ESPRIT overlap, they have

common elements. This is additional information coming from the particular structure of the

array which is ignored by TLS. In order to take this structure into account, SLS was proposed

in [Haa97b]. In SLS we model an explicit error term for Û s, accounting for the fact that the

true source of error in the shift invariance equation is the subspace estimation error. Since

the resulting cost function represents a quadratic least squares problem, an exact closed-form

solution does not exist anymore. However, it is shown in [Haa97b] that the cost function can

be solved iteratively by local linearization and that one iteration is typically sufficient.

To this end, the SLS cost function for a 1-D shift invariance equation9 J1 ⋅ Û s ⋅Ψ ≈ J2 ⋅ Û s

can be expressed as

Ψ̂SLS = Ψ̂LS +∆ΨSLS where

∆ΨSLS = argmin
∆Ψ,∆U s

∥J1 ⋅ (Û s +∆U s) ⋅ (Ψ̂LS +∆Ψ) − J2 ⋅ (Û s +∆U s)∥2F + κ2 ∥∆U s∥2F . (11.45)

Here, Ψ̂LS refers to the LS solution given by Ψ̂LS = (J1 ⋅ Û s)+ ⋅ J2 ⋅ Û s. Moreover, κ is a

regularization constant controlling the influence of the regularization term that penalizes too

large updates in ∆U s. It is given by κ2 = M(sel)

M ⋅α
, where α ∈ (0,∞) controls the amount of

regularization: large values of α refer to using less regularization. Since (11.45) is a quadratic

least squares problem, it is solved iteratively by local linearization. In the k-th iteration, the

9The same algorithm applies to R-D shift invariance equations (where Jn is replaced by J
(r)
n for n = 1,2 and

r = 1,2, . . . ,R) and to the transformed real-valued invariance equations (where J
(r)
n , U s, and Ψ

(r) are replaced

by K
(r)
n , Es and Υ

(r), respectively).
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updates to ∆U s and ∆Ψ are calculated via [Haa97b]

∆U s,k+1 =∆U s,k +∆∆U s,k and ∆Ψk+1 =∆Ψk +∆∆Ψk where⎡⎢⎢⎢⎢⎣
vec{∆∆Ψk}
vec{∆∆U s,k}

⎤⎥⎥⎥⎥⎦ = −F
+ ⋅
⎡⎢⎢⎢⎢⎣

vec{Rk}
κ ⋅ vec{∆U s,k}

⎤⎥⎥⎥⎥⎦ with (11.46)

Rk = J1 ⋅ (Û s +∆U s,k) ⋅ (Ψ̂LS +∆Ψk) − J2 ⋅ (Û s +∆U s,k) and

F =

⎡⎢⎢⎢⎢⎣
Id ⊗ (J1 (Û s +∆U s,k)) [(Ψ̂LS +∆Ψk)⊗ J1] − [Id ⊗ J2]

0 κ ⋅ IM ⋅d
⎤⎥⎥⎥⎥⎦ ,

where the initial values are given by ∆U s,0 = 0M×d and ∆Ψ0 = 0d×d. Even though SLS

is derived as an iterative procedure, [Haa97b] argues that only one iteration is required to

achieve a considerable improvement in estimation accuracy and therefore only a single iteration

is needed.

It is important to note that TLS and SLS can be used to replace LS for the solution of

the shift invariance equations in all the ESPRIT-type algorithms that were introduced up to

here. Since they all follow the same three steps (signal subspace estimation, solution of the

invariance equations, extraction of the spatial frequencies), we simply exchange the second

step, using SLS instead of LS to solve the invariance equations.

SLS-based ESPRIT outperforms LS-based ESPRIT (both in the matrix as well as the tensor

case) since the structure of the shift invariance equations is explicitly exploited to find an

approximate solution for it. On the other hand, we have also seen that Tensor-ESPRIT-type

algorithms outperform matrix-based ESPRIT since the multidimensional structure is exploited

already in the signal subspace estimation step. This sparks the natural question whether SLS

can be further improved if the multidimensional structure is also taken into account in the

solution of the shift invariance equations.

This question was answered in [RH07b], where the TS-SLS scheme was introduced. TS-SLS

is based on the underlying idea in SLS to model an explicit perturbation for the signal subspace.

However, the structure of the subspace tensor is exploited explicitly by modeling individual

perturbation terms for the components it is constructed from. Consider R = 2 as an example.

In this case, the signal subspace tensor U [s] can be estimated via Û
[s]
= Ŝ

[s] ×1 Û [s]1 ×2 Û [s]2
(cf. (10.10))10. Therefore, instead of modeling one unstructured perturbation term ∆U [s] for
the entire tensor Û

[s]
we can exploit its structure to define three perturbation terms: one term

∆S[s] for the truncated core tensor Ŝ
[s]

and two terms ∆U
[s]
r for the r-mode singular vectors

10Note that the multiplication with Σ̂
−1

s along the third mode is skipped at this point since it has no impact
on the subspace estimate and skipping it simplifies the notation we need here.
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Û
[s]
r , r = 1,2.

The cost function for TS-SLS can then be expressed as [RH07b]

∆Ψ
(r)
TS−SLS

= argmin
∆Ψ

(r),∆U
[s]
1 ,∆U

[s]
2 ,∆S[s]

∥R(r)∥2
H
+ κ(r)21 ⋅ ∥∆U [s]1 ∥2F + κ(r)22 ⋅ ∥∆U [s]2 ∥2F + κ(r)23 ⋅ ∥∆S[s]∥2

H

R(r) = Û [s] ×r J(r)1 ×R+1 (Ψ̂(r)LS +∆Ψ(r)) − Û [s] ×r J(r)2 (11.47)

Û
[s]
= (Ŝ[s] +∆S[s]) ×1 (Û [s]1 +∆U [s]1 ) ×2 (Û [s]2 +∆U [s]2 )

κ
(r)2
1 =

M2 ⋅M (sel)
r ⋅ d

α ⋅Mr ⋅ p1 , κ
(r)2
2 =

M1 ⋅M (sel)
r ⋅ d

α ⋅Mr ⋅ p2 , κ
(r)2
3 =

M ⋅M (sel)
r

α ⋅Mr ⋅ p1 ⋅ p2 , pr =min{Mr, d} .
A solution based on iterative linearization can be developed in a similar manner as for the

SLS scheme. To simplify the notation, we drop the (⋅)[s] superscript. Then, the k-th iteration

comprises of computing the following update term

∆Ψ
(r)
k+1
=∆Ψ

(r)
k
+∆∆Ψ

(r)
k

∆U1,k+1 =∆U1,k +∆∆U1,k

∆U2,k+1 =∆U2,k +∆∆U2,k

∆Sk+1 =∆Sk +∆∆Sk⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{∆∆Ψ
(r)
k
}

vec{∆∆U1,k}
vec{∆∆U2,k}
vec{∆∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(r)
1 F

(r)
2 F

(r)
3 F

(r)
4

0 κ
(r)
1 IM1⋅p1 0 0

0 0 κ
(r)
2 IM2⋅p2 0

0 0 0 κ
(r)
3 Ip1⋅p2⋅d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{R(r)
k
}

κ
(r)
1 vec{∆U1,k}

κ
(r)
2 vec{∆U2,k}
κ
(r)
3 vec{∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R
(r)
k
= Û

[s]
k ×r J(r)1 ×R+1 (Ψ̂(r)LS +∆Ψ

(r)
k
) − Û [s]k ×r J(r)2

Û
[s]
k = (Ŝ +∆Ŝk) ×1 (Û1 +∆Û1,k) ×2 (Û2 +∆Û2,k)

A sketch of the derivation of this update rule together with the (rather lengthy) expressions

for F
(r)
n , n = 1,2,3,4, r = 1,2 is shown in Appendix D.9.

Instead of solving the TS-SLS problem for both dimensions r = 1,2 separately it is also

possible to solve one joint 2-D TS-SLS problem. This extension is similar to the R-D extension

for SLS proposed in [Haa97b]. Considering the sum of norms of the residual tensors in the cost

function and proceeding with the iterative linearization as before, we arrive at the following
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11. ESPRIT-type parameter estimation schemes

update rule for 2-D TS-SLS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{∆∆Ψ
(1)
k
}

vec{∆∆Ψ
(2)
k
}

vec{∆∆U1,k}
vec{∆∆U2,k}
vec{∆∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(1)
1 0 F

(1)
2 F

(1)
3 F

(1)
4

0 F
(2)
1 F

(2)
2 F

(2)
3 F

(2)
4

0 0 κ
(2D)
1 IM1⋅p1 0 0

0 0 0 κ
(2D)
2 IM2⋅p2 0

0 0 0 0 κ
(2D)
3 Ip1⋅p2⋅d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{R(1)
k
}

vec{R(2)
k
}

κ
(2D)
1 vec{∆U1,k}

κ
(2D)
2 vec{∆U2,k}
κ
(2D)
3 vec{∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
κ
(2D)2
1 =

(M (sel)
1 ⋅M2 +M1 ⋅M (sel)

2 ) ⋅ d
α ⋅M1 ⋅ p1

κ
(2D)2
2 =

(M (sel)
1 ⋅M2 +M1 ⋅M (sel)

2 ) ⋅ d
α ⋅M2 ⋅ p2

κ
(2D)2
3 =

M
(sel)
1 ⋅M2 +M1 ⋅M (sel)

2

α ⋅ p1 ⋅ p2 .

Concerning the iterations of TS-SLS, one can either fix the number of iterations a priori (in

simulations we found between 2 and 4 iterations to be sufficient) or keep iterating until a

suitable stopping criterion is fulfilled. For instance, TS-SLS can be terminated if the relative

change in the norms of the residual tensors R
(r)
k

between iterations drops below a threshold

ε, i.e., ∑R
r=1 (∥R(r)k−1

∥
H
− ∥R(r)

k
∥
H
) / ∥R(r)

k
∥
H
< ε.

11.8. Simulation Results

In this section we compare the various ESPRIT-type algorithms in terms of their estimation

accuracy via Monte-Carlo simulations. We generate data according to the model (9.11). The

noise samplesN are drawn according to a Zero Mean Circularly Symmetric Complex Gaussian

(ZMCSCG) distribution with variance σ2
n and assumed to be mutually uncorrelated. The

amplitudes S are also assumed to be ZMCSCG distributed with unit variance. In the special

case where strict-sense non-circular sources are considered, S is generated according to (11.21)

where the samples in S0 are drawn from a real-valued zero mean Gaussian distribution with

unit variance and the phases ϕi are fixed. For the case where source correlation is considered

we generate S such that Rss = E{S ⋅SH} takes the form

Rss =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ1,2 . . . ρ1,d

ρ2,1 1 . . . ρ2,d

⋮ ⋮ ⋱ ⋮

ρd,1 ρd,2 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with ∣ρi,j ∣ = ρ ∀i, j = 1,2, . . . , d (11.48)
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and arg {ρi,j} drawn from a uniform distribution in [0,2π]. Consequently, the scalar parameter

ρ ∈ [0,1] controls the level of correlation between each pair of sources. For the array we assume

uniform sampling in R dimensions with M1 ×M2 . . . ×MR sampling points, i.e., for R = 1 we

have an M -element ULA and for R = 2 an M1 ×M2 URA.

The estimation accuracy of the algorithms is measured with respect to a root mean square

estimation error (RMSE) defined as

RMSE =

¿ÁÁÀ
E{1

d

1

R

d

∑
i=1

R

∑
r=1

(µ(r)i − µ̂
(r)
i )2}. (11.49)

To estimate the RMSE, the ensemble average is replaced by an arithmetic average over Monte-

Carlo trials. In order to demonstrate the enhanced HOSVD-based subspace estimate we also

display the Largest Principle Angle (LPA) between the true subspace (given by the columns

of the array steering matrix A) and the estimated signal subspaces. The LPA between the

column spaces of two matrices U1,U2 ∈ C
M×d can be computed through [GvL96]

LPA = cos−1 (σmin {orth{U1}H ⋅ orth{U2}}), (11.50)

where orth{U i} , i = 1,2 is an orthonormal basis for the column space of U i and σmin {Z}
denotes the smallest singular values of the matrix Z.

In Section 11.8.1 we compare 1-D and R-D versions of Standard ESPRIT (SE), Unitary

ESPRIT (UE), Standard Tensor-ESPRIT (STE), and Unitary Tensor-ESPRIT (UTE). The

Least-Squares algorithms to solve the invariance equations are compared in Section 11.8.2.

1-D and R-D ESPRIT-type algorithms for strict-sence non-circular sources are shown in Sec-

tions 11.8.3 and 11.8.4, respectively. As a reference, we also display the corresponding de-

terministic Cramér-Rao Bound (CRB) [SN89] and its corresponding version for strict-sense

non-circular sources (CRBnc) derived in [RH07a]. Table 11.1 summarizes the abbreviations

used in the subsequent figure captions.

11.8.1. R-D Standard and Unitary Tensor-ESPRIT

The simulations results shown in Figure 11.3a and Figure 11.3b provide a comparison of the

performance as a function of the number of dimensions R in terms of the LPA and the RMSE,

respectively. We distribute a total of M = 256 sensors among a varying number of dimensions

R. The point R = 2 corresponds to a 16× 16 URA, for R = 3, a 8× 8× 4 dimensional harmonic

retrieval problem is simulated, and R = 4,6, and 8 correspond to R-dimensional harmonic

retrieval problems of size 4×4×4×4, 4×4×2×2×2×2, and 2×2×2×2×2×2×2×2, respectively.
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Figure 11.3.: Performance of the algorithms versus the number of dimensions R: The number
of sensors is fixed to 256 and distributed among R dimensions with uniform spacing in all
modes (R = 2: 16 × 16, R = 3: 8 × 8 × 4, R = 4: 4 × 4 × 4 × 4, R = 6: 4 × 4 × 2 × 2 × 2 × 2,
and R = 8: 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2). Two sources are positioned at µ

(r)
1 = 1, µ

(r)
2 = 0.95,

r = 1,2, . . . ,R. The SNR is fixed to 40 dB, N = 2 snapshots are used.

138



11.8. Simulation Results

Abbreviation Meaning

LPA Largest principal angle
RMSE Root mean square error
SNR Signal to noise ratio
SE R-D Standard ESPRIT
UE R-D Unitary ESPRIT
STE R-D Standard Tensor-ESPRIT
UTE R-D Unitary Tensor-ESPRIT

NC UE R-D NC Unitary ESPRIT
NC UTE R-D NC Unitary Tensor-ESPRIT
CRB Deterministic Cramér-Rao Bound
CRBnc det. Cramér-Rao Bound for strict-sense non-circular sources [RH07a]
LS Least Squares
SLS Structured Least Squares

TS-SLS Tensor-Structure Structured Least Squares
TS-RD-SLS Tensor-Structure R-D Structured Least Squares

Table 11.1.: Abbreviations used for R-D the simulation results

The SNR is fixed to 40 dB and N = 2 snapshots are used. The d = 2 sources are relatively close

to each other since µ
(r)
1 = 1 and µ

(r)
2 = 0.95 for r = 1,2, . . . ,R. The results show that there is a

significant improvement both in terms of the LPA as well as the RMSE. We observe the largest

improvement in the two-dimensional case (R = 2). Note that the improvement of the tensor

approach diminishes as R increases. This gain vanishes completely if R = 8. In this case, we

have Mr = 2 sensors in each of the dimensions and, therefore, the condition d ≥ max
r=1,2,...,R

(Mr) is
fulfilled. Consequently, as shown in Section 10.2, the HOSVD-based signal subspace estimate

is equal to the one obtained through the matrix approach.

In Figure 11.4a and Figure 11.4b we vary the SNR for closely spaced sources at µ
(1)
1 = µ

(2)
1 = 1

and µ
(1)
2 = µ

(2)
2 = 0.95. Again, only N = 2 snapshots are used, and a URA of size 16 × 16 is

employed. As before, the improvements in terms of the LPA and the RMSE are clearly visible.

The effects of varying the source separation are studied in the simulation results shown in

Figure 11.5a and Figure 11.5b. The simulation setup is similar to the previous case. However,

now the SNR is fixed to 40 dB and the source positions are varied in the following fashion:

The first source is fixed at µ
(1)
1 = µ

(2)
1 = 1, while the second source is moved to the positions

µ
(1)
2 = µ

(2)
2 = 1 −∆ for various values of the separation parameter ∆µ, which is also shown

on the horizontal axis. We can see that increasing the separation above 0.5 does not alter

the performance any further. The improvements of Standard Tensor-ESPRIT and Unitary
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Figure 11.4.: Performance of the algorithms versus SNR in dB. Two sources are positioned at

µ
(r)
1 = 1, µ

(r)
2 = 0.95, r = 1,2, a 16 × 16 URA and N = 2 snapshots.
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Figure 11.5.: Performance of the algorithms versus the separation of the two sources. The first

source is fixed at µ
(r)
1 = 1 and the second source is moved to the positions µ

(r)
2 = 1 −∆µ

for r = 1,2, where ∆µ is the separation shown on the horizontal axis. The SNR is fixed to
40 dB, a 16 × 16 URA, and N = 2 snapshots are used.
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Figure 11.6.: RMSE vs. SNR for d = 3 correlated sources (ρ = 0.999) on a 3 × 3 URA, N = 10,

µ
(1)
1 = 1, µ

(2)
1 = −1, µ(1)2 = 0, µ

(2)
2 = 1, µ

(1)
3 = −1, µ(2)3 = 0.

Tensor-ESPRIT in terms of the LPA and the RMSE are significant.

11.8.2. Tensor-Structure Structured Least Squares

The next set of simulation result compares the different Least Squares approaches to solve the

invariance equations, namely the LS approach, the matrix-based SLS technique and its tensor

extensions TS-SLS and TS-RD-SLS.

In Figure 11.6, d = 3 sources with a strong correlation of ρ = 0.9999 are captured by a 3 × 3
uniform rectangular array collecting N = 10 subsequent snapshots for various values of the SNR

at the receiver. The true spatial frequencies are set to µ
(1)
1 = 1, µ

(2)
1 = −1, µ(1)2 = 0, µ

(2)
2 = 1,

µ
(1)
3 = −1, µ(2)3 = 0. Since we have d ≥ max(M1,M2), the HOSVD-based subspace estimate

coincides with the matrix-based subspace estimate. Therefore, there is no improvement of the

LS-based STE over the LS-based SE. Likewise, the SLS-based UE algorithm performs identical

to the SLS-based UTE algorithm. However, the RMSE of UTE combined with TS-SLS is

significantly lower and its R-D extension TS-RD-SLS provides an additional gain. This shows

that even in scenarios where the condition d ≥ max
r=1,2,...,R

(Mr) is fulfilled such that the HOSVD-

based subspace estimate provides no improvement, we can benefit from the multidimensional

structure via the TS-SLS algorithm.
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Figure 11.7.: RMSE vs. SNR for d = 2 correlated sources on a 3 × 3 URA, single snapshot

(N = 1), µ
(1)
1 = 1, µ

(2)
1 = −1, µ(1)2 = 0, µ

(2)
2 = 1.

For the simulation shown in Figure 11.7, a 5×7 URA with N = 1 snapshot was used for d = 2

harmonics with true spatial frequencies µ
(1)
1 = 1, µ

(2)
1 = −1, µ(1)2 = 0, µ

(2)
2 = 1. Note that since

N = 1, Standard ESPRIT cannot be applied. Here we can observe the effect of the improved

signal subspace estimate in going from UE to UTE and the additional gain in using TS-SLS

or TS-RD-SLS. In general, we observe that TS-SLS and TS-RD-SLS are beneficial in critical

scenarios, e.g., if the number of snapshots is small and/or if the sources are highly correlated.

11.8.3. 1-D NC Unitary ESPRIT

In order to show the improvement obtained by exploiting strict-sense non-circular sources

we show four simulation results comparing the 1-D Standard and Unitary ESPRIT with the

1-D NC Unitary ESPRIT technique. We do not show 1-D NC Standard ESPRIT since its

performance is identical to 1-D NC Unitary ESPRIT, as discussed in Section 11.5.2. The

strict-sense non-circular source amplitudes are generated according to (9.22), generating S0

from a standard normal distribution with source correlation ∣E{s0,i[n] ⋅ s0,j[n]}∣ = ρ.
Since the results presented in this section refer to the 1-D case only, we compute the spatial

frequency of the i-th source as a function of the azimuth angle θ ∈ [0○,180○] via µi = π ⋅ cos(θi)
which corresponds to a ULA with λ/2 inter-element spacing and a broadside of θ = 90○. The
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Figure 11.8.: RMSE vs. the angular separation ∆θ for a M = 8 ULA, N = 10 snapshots, an
SNR of 30 dB, d = 2 uncorrelated sources with a phase separation of ∆ϕ = π/2.
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Figure 11.9.: RMSE vs. the non-circularity phase separation ∆ϕ for a M = 8 ULA, N = 10
snapshots, an SNR of 30 dB, and d = 2 uncorrelated sources at θ1 = 88.5

○, θ2 = 90
○.
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Figure 11.10.: RMSE vs. the correlation coefficient ρ for d = 2 with a non-circularity phase
separation of ∆ϕ = π/2 and azimuth angles θ1 = 88○, θ2 = 93○. An M = 8 ULA, N = 10
snapshots, and an SNR of 30 dB is assumed.
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Figure 11.11.: RMSE vs. the number of sources d for a 5-ULA, N = 10 snapshots and an SNR
of 40 dB. The positions of the sources are chosen equi-spaced in the interval [20○,160○], the
non-circularity phases ϕi are chosen randomly.
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11. ESPRIT-type parameter estimation schemes

RMSE of the azimuth angle is then defined as

RMSEAzimuth =

¿ÁÁÀ
E{1

d

d

∑
i=1

(θi − θ̂i)2} (11.51)

and measured in degrees.

In Figure 11.8 we consider an M = 8 element ULA, N = 10 snapshots, an SNR of 30 dB,

and d = 2 uncorrelated sources with a phase separation of ∆ϕ = π/2. We vary the spatial

separation by setting θ1 = 60○ and θ2 = θ1 +∆θ. We observe that for NCUE the RMSE is

independent from the angular separation, which is due to the fact that the phase angles are

orthogonal (∆ϕ = π/2).
To study the effect of the phase separation we vary ∆ϕ for the simulation shown in Fig-

ure 11.9. The simulation setup is similar to the previous experiment except that the azimuth

angles are fixed to θ1 = 88.5
○, θ2 = 90

○ and ∆ϕ is varied. We observe that for SE and UE, ∆ϕ

has no impact. On the other hand, NCUE converges to UE for ∆ϕ → 0 and has the largest

gain compared to UE for ∆ϕ = π/2.
The impact of source correlation is investigated in the simulation result shown in Fig-

ure 11.10. Again, the settings are similar as before, except that the azimuth angles are changed

to θ1 = 88
○ and θ2 = 90

○, the phase separation is fixed to ∆ϕ = π/2. We observe that Unitary

ESPRIT is immune to the source correlation which is due to the inherent Forward-Backward

Averaging step that decorrelates the sources. While NCUE always outperforms NCSE, it is

outperformed by UE for high values of the correlation. This is due to the fact that FBA has

no docorrelation effect for NCUE, as shown in Section 11.5.2.

To demonstrate the effect of increasing the number of sources d we show Figure 11.11 where

d is varied from 1 to its maximum possible value. For a ULA of M = 5 sensors, SE and UE

are limited to dmax = 4 wavefronts. However, since the augmentation performed for NC UE

virtually doubles the number of possible sources, the largest possible d for NC UE is also

doubled to dmax = 8. For the simulation we fix the SNR to 40 dB, consider N = 10 snapshots,

and draw the phase angles ϕi randomly according to a uniform distribution in [−π,π]. The

azimuth angles are chosen with a uniform spacing in the interval [20○,160○], i.e., for d > 1 we

choose θi = 20
○ + 140○ ⋅ (i − 1)/(d − 1) for i = 1,2, . . . , d and for d = 1 we choose θ1 = 90

○.

11.8.4. R-D NC Unitary Tensor-ESPRIT

The final set of simulations demonstrates the performance of the R-D ESPRIT-type algorithms

for non-circular sources. As in the 1-D case we only consider Unitary ESPRIT-type algorithms
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Figure 11.12.: RMSE vs. SNR for d = 3 correlated sources (ρ = 0.99) at fixed positions µ
(1)
1 =

µ
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1 = 1, µ
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2 = 0.85, µ

(1)
3 = µ

(2)
3 = 1.15 with phase angles ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/4. A

5 × 7 URA and N = 10 snapshots.
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Figure 11.13.: RMSE vs. SNR for a 6×6 URA, N = 10 snapshots, d = 4 uncorrelated sources at

fixed positions µ
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(1)
4 = µ

(2)
4 = 0.7 with phase

angles ϕ1 = 0, ϕ2 = π/6, ϕ3 = π/3, ϕ4 = π/2.

147



11. ESPRIT-type parameter estimation schemes

10 20 30 40

10
−2

10
−1

10
0

SNR [dB]

R
M

S
E

 [r
ad

]

 

 

SE
NC UE
NC UTE (d,d)
NC UTE (d,2d)
NC UTE (2d,2d)

Figure 11.14.: RMSE vs. SNR for the 20-element 2-D array from Figure 9.3b, d = 2 correlated

sources (ρ = 0.99) at µ
(1)
1 = 0.7, µ

(1)
2 = 1, µ

(2)
1 = −0.3, µ(2)2 = −0.1 with phase angles ϕ1 = 0,

ϕ2 = π/4, and N = 10 snapshots.

and compare R-D Unitary ESPRIT and R-D NC Unitary ESPRIT with their tensor versions

R-D Unitary Tensor-ESPRIT and R-D NC Unitary Tensor-ESPRIT.

For the simulation result shown in Figure 11.12 we consider a 5× 7 URA, N = 10 snapshots

and d = 3 correlated sources (ρ = 0.99). The sources’ phase angles are fixed to ϕ1 = 0, ϕ2 = π/2,
ϕ3 = π/4 and the true spatial frequencies are given by µ

(1)
1 = µ

(2)
1 = 1, µ

(1)
2 = µ

(2)
2 = 0.85,

µ
(1)
3 = µ

(2)
3 = 1.15. On the other hand, for Figure 11.13 we use a 6 × 6 URA and d = 4

uncorrelated sources with phase angles given by ϕ1 = 0, ϕ2 = π/6, ϕ3 = π/3, and ϕ4 = π/2.
Moreover, the true spatial frequencies in this scenario are µ

(1)
1 = µ

(2)
1 = 1, µ

(1)
2 = µ

(2)
2 = 0.9,

µ
(1)
3 = µ

(2)
3 = 0.8, and µ

(1)
4 = µ

(2)
4 = 0.7. Both simulation results show that NC UE outperforms

UE (due to exploiting the non-circularity), UTE outperforms UE (due to exploiting the R-D

structure), and NC UTE outperforms both (by combining both benefits).

Finally, Figure 11.14 shows the result of using a 20-element array that is not uniformly spaced

and not centro-symmetric, which is depicted in Figure 9.3b. We choose d = 2 correlated sources

(ρ = 0.99) with true spatial frequencies given by µ
(1)
1 = 0.7, µ

(1)
2 = 1, µ

(2)
1 = −0.3, µ(2)2 = −0.1

and phase angles set to ϕ1 = 0, ϕ2 = π/4. The number of snapshots is set to N = 10 Since the

array is not centro-symmetric, R-D Unitary ESPRIT and R-D Unitary Tensor-ESPRIT cannot

be applied. However, R-D NC Unitary ESPRIT and R-D NC Unitary Tensor-ESPRIT can
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11.9. Summary

be used as shown in Section 11.6. However, for non-centro-symmetric arrays the mode-wise

augmentation can lead to an increase in the n-ranks of the desired signal component exceeding

d in the first R = 2 modes. This must be taken into account when computing the truncated

HOSVD for the tensor-based signal subspace estimate. We therefore depict three curves for

NCUTE labeled by (p1, p2), which refers to truncating the HOSVD to rank p1 and p2 in the

first and the second mode (we always set p3 = d). We observe that choosing p1 = p2 = d

leads to an error floor since the tensor is truncated to an n-rank that is too low. The “safe”

choice p1 = p2 = 2d performs well. The optimal choice of n-ranks in this scenario is p1 = d and

p2 = 2d (since this choice coincides with the n-ranks of the noise-free tensor), which performs

slightly better. Note that the n-ranks depend only on the antenna configuration and not on

the actual spatial frequencies. Hence, they can be determined beforehand from the n-ranks of

the noise-free array steering tensor.

11.9. Summary

In this chapter we have shown how subspace-based parameter estimation schemes can be

improved by exploiting the specific structure of the signal of interest. We have chosen the

ESPRIT algorithm to demonstrate the enhancements, however, many of them can be applied

to many different subspace-based parameter estimation schemes as well.

For multidimensional signals sampled on separable R-D grids we have seen that tensor cal-

culus allows to improve the signal subspace estimate as long as the number of wavefronts

is not too large. In this case, the multidimensional structure can be used for more efficient

denoising, effectively filtering out all parts of the noise that do not obey the required struc-

ture. This enhanced signal subspace estimate can be combined with arbitrary subspace-based

multidimenaional parameter estimation schemes.

Based on tensor calculus, a natural formulation of R-D shift invariance and the resulting

R-D versions of Standard ESPRIT and Unitary ESPRIT can be found. We have also shown

that if the tensor-valued shift invariance equations are solved via LS, the resulting Tensor-

ESPRIT-type algorithms are identical to their matrix-based counterparts except for the signal

subspace estimate which is replaced by the enhanced HOSVD-based signal subspace estimate.

We have also discussed more structured solutions of the invariance equations, namely the

Structured Least Squares (SLS) algorithm and its tensor extension Tensor-Structure SLS (TS-

SLS). As we have shown via simulations, even in the cases where the HOSVD-based subspace

estimate provides no improvement, we can benefit from tensors via the TS-SLS solution to the

invariance equations. This is particularly relevant in critical scenarios where the sources are
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11. ESPRIT-type parameter estimation schemes

highly correlated or the number of available snapshots is small.

For the case where the source signals can be modeled as strict-sense non-circular random

variables we have introduced a class of ESPRIT-type algorithms that takes advantage of this

fact. In the matrix-case, we have shown that by augmenting the rows of the measurement

matrix by the conjugates of the original measurements, a virtual array steering matrix is

created that has twice the number of elements and can hence resolve more sources. Based on

this idea, the NC Standard ESPRIT and the NC Unitary ESPRIT algorithm can be defined. As

we have seen numerically, NC ESPRIT-type algorithms outperform ESPRIT-type algorithms

in terms of the estimation accuracy. The improvement is particularly pronounced for closely

spaced sources that arrive at different phase angles ϕi.

To combine the benefits of multidimensional signals and strict-sense non-circular sources, a

different manner of performing the augmentation is needed, since the matrix-based approach

destroys the separable R-D sampling grid required for tensor-based algorithms. Based on

a sequence of r-mode augmentations for r = 1,2, . . . ,R we have defined the R-D NC Stan-

dard Tensor-ESPRIT and the R-D NC Unitary Tensor-ESPRIT algorithm. Simulations have

shown that they allow to combine both benefits, outperforming the matrix-based R-D NC

ESPRIT-type algorithms as well as the R-D Tensor-ESPRIT-type algorithms which do not

take advantage of the strict-sense non-circularity. A summary of the different ESPRIT-type

algorithms and the different solutions to the overdetermined shift invariance equations is also

shown in Chapter 13, in Tables 13.1 and 13.2, respectively.

It is important to point out that the modifications of the ESPRIT algorithm that are pro-

posed here represent simple algebraic steps which do not significantly increase the computa-

tional complexity. This underlines the original idea to exploit given structures in the data in

order to enhance the performance with simple algebraic modifications. Some of these are in

fact quite generic. For instance, the HOSVD-based subspace estimate can be combined with

arbitrary subspace-based algorithms in order to enhance their performance. Likewise, the

widely linear processing performed for NC ESPRIT-type algorithms can be applied to many

other schemes (e.g., the Root-MUSIC algorithm [CWS01] or Spectral MUSIC [AD06]).
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12. Performance analysis

12.1. Overview

It is quite common in many engineering disciplines to compare the performance of different

algorithms via Monte-Carlo simulations. That means that for a specific setting of the system

parameters, the corresponding input data to the algorithm is generated in a random manner

several times and the performance is evaluated by estimating some statistical measure (often

the mean or the squared mean) via an average over many random trials. The main motivation

for this procedure is its simplicity. Often it is too difficult to infer from the distribution of

the input data directly on the distribution of the parameters of interest, due to the involved

non-linear calculations in between.

Yet, this simplicity comes at a price. Monte-Carlo simulation results suffer from some major

drawbacks one has to be aware of. Firstly, they are never truly generic since for the simulation

specific assumptions about parameters or at least about their distributions have to be made.

Secondly, the outcome is an estimate of the true parameter and it is often difficult to predict

how accurate this estimate is. Thirdly, since they are based on randomly generated data, for

which, typically, system-specific pseudo-random number generators are used, the results are

never fully reproducible and hence always somewhat subjective.

So even if from a Monte-Carlo simulation result it looks like one algorithm outperforms

the other this is nowhere close to a rigorous proof. This behavior is specific to the system

setting considered in the simulation and it is non-objective as it may as well be the result of

a random fluctuation in the data set that was considered. This is the main motivation for

considering analytical performance assessments. These allow to compare different algorithms

on an objective and generic basis without the need of performing Monte-Carlo simulations.

In this chapter we discuss an asymptotic performance analysis for subspace-based param-

eter estimation schemes which is based on an existing first order expansion of the subspace

estimation error in a singular value decomposition. The underlying result is very generic since

it represents an explicit first-order expansion in the perturbation term, which means that we

do not need to make any assumptions about the statistics of this perturbation. The only as-

sumption we need is that the perturbation is “small”, that is to say, the result becomes exact

only as the norm of the perturbation goes to zero compared to the norm of the desired signal

component.
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We demonstrate how to extend these existing results to the HOSVD-based subspace estimate

and how they can be applied to compute the analytical performance of arbitrary ESPRIT-

type algorithms, including Tensor-ESPRIT-type or NC ESPRIT-type algorithms. On top of

the explicit expansion in terms of the perturbation term we derive the mean square estimation

error for ESPRIT-type algorithms if the perturbation is circularly symmetric white noise noise.

For the special case of a single source and uniform arrays we show how the expressions can be

simplified to yield MSE expressions which depend only on the system parameters such as the

number of antennas or the SNR. Such expressions allow interesting and practically relevant

insights, for instance, how far the estimators are away from the ultimate lower bound on their

variance given by the Cramér-Rao Lower Bound.

12.2. State of the art

Subspace-based parameter estimation schemes have been known for more than two decades.

Especially the publication of the Multiple Signal Classification (MUSIC) algorithm [Sch86] and

the ESPRIT algorithm [RPK86] have sparked a great interest in finding a suitable analytical

performance assessment.

Such analytical results have been published very shortly afterwards, most frequently cited

are [KB86] for the MUSIC algorithm and [RH89a] for ESPRIT. Many follow-up papers exist

which extend the original results, e.g., [PK89b], [Fri90], [MZ94], [ZKM92], [MHZ96], and many

others. However, these results have something in common: they all go more or less directly

back to a result on the distribution of the eigenvectors of a sample covariance matrix first

published in [Bri75].

In contrast to these results, in [LLV93] an entirely different approach was proposed, which

provides an explicit first-order expansion of the subspace of a desired signal component if it

is observed superimposed by a small additive perturbation. This approach has a number of

advantages compared to [Bri75]. Firstly, [Bri75] is asymptotic in the sample size N , i.e., the

result becomes only accurate as the number of snapshots N is very large, whereas [LLV93]

is asymptotic in the effective SNR, i.e., it can be used even for N = 1 as long as the noise

variance is sufficiently small. Secondly, [Bri75] requires strong Gaussianity assumptions, not

only on the perturbation (i.e., the noise), but also on the source symbols. Since [LLV93] is

explicit, no assumptions about the statistics of either the desired signal or the perturbation

are needed. Thirdly, the covariance expressions from [Bri75] are much less intuitive than the

expansion from [LLV93] which shows directly how much of the noise subspace “leaks into” the

signal subspace due to the erroneous estimate. Finally, the expressions involved in [Bri75] are
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quite complex and tough to handle, whereas [LLV93] requires only a few terms which appear

directly as block matrices of the SVD of the noise-free observation matrix.

Due to these advantages we clearly favor [LLV93] as a starting point. The authors in [LLV93]

have already shown that their results on the perturbation of the subspace can be used to find

a first order expansion for the MUSIC, the Root-MUSIC, the Min-Norm, the State-Space-

Realization, and even the ESPRIT algorithm. However, they only considered 1-D Standard

ESPRIT. We extend their work by considering multiple dimensions (R-D ESPRIT), by incor-

porating forward-backward-averaging (for Unitary ESPRIT), by considering the tensor-based

subspace estimate (for Standard and Unitary Tensor-ESPRIT), by investigating the effect of

using SLS to solve the invariance equation instead of the LS solution used in [LLV93], and by

providing mean square error expressions of the resulting estimation errors in these cases.

There have been other follow-up papers based on [LLV93]. For instance, [Xu02] provides

a first-order and second-order perturbation expansion which can be seen as a generalization

of [LLV93]. In [LLM08] the authors show that there is also a first-order contribution of

the perturbation of the signal subspace which lies in the signal subspace (which [Xu02] and

[LLV93] have argued to be of second order and hence negligible). Based on [Xu02], subspace-

based blind multiuser detection algorithms have been analyzed, e.g., in [ZLW04]. A mean

square error expression for Standard ESPRIT is provided by the same authors in [LV92],

however, it does not generalize easily to the tensor case. Moreover, other authors have studied

the asymptotical performance of ESPRIT, e.g., [SS91, ESS93] where harmonic retrieval from

time series is investigated and MSE expressions for a large number of snapshots as well as

MSE expressions for a high SNR are derived. Note that we find MSE expressions compatible

to [ESS93] by only assuming a high effective SNR, i.e., either the number of snapshots or the

SNR can tend to infinity. Interestingly, [SS91, ESS93] also consider the special case for a single

source. However, the expressions provided there are specific to harmonic retrieval from time

series and they are not compared to the corresponding Cramér-Rao Bound. Some analytical

results on the asymptotic efficiency of MUSIC, Root-MUSIC, ESPRIT, and TLS-ESPRIT are,

among others, presented in [PF88], [RH89a], [RH89b], and [OVK91], respectively. However,

these results are asymptotic in the number of snapshots N and sometimes even in the number

of sensors M . The asymptotic equivalence of LS-ESPRIT, TLS-ESPRIT, Pro-ESPRIT, and

the Matrix Pencil method has also been shown, see for instance [HS91]. Overall, in the matrix

case, the number of existing results is quite large, since the underlying methods have been

known for more than two decades. However, we emphasize again that the main novelty of

the work presented here does not reside in the performance analysis for the matrix-based

Standard ESPRIT algorithm but in its extensions to the tensor case and to the incorporation
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of Structured Least Squares.

In the tensor case a first-order expansion for the HOSVD has been proposed in [dLdMV00a].

However, it is not suitable for our application since it does not consider the HOSVD-based

subspace estimate but the subspaces of the separate n-mode unfoldings and their singular

values. Moreover, the perturbation is modeled via a single scalar real-valued parameter ǫ. A

first-order expansion for the best rank-(R1,R2,R3)-expansion is provided in [dL04b]. However,

again, it is not directly applicable for analyzing the HOSVD-based subspace estimate as it

investigates the approximation error of the entire tensor. Consequently, our approach to

analyze the HOSVD-based subspace estimate based on the link to the SVD-based subspace

estimate via a structured projection is entirely novel. Moreover, the application of these

results to find the analytical performance of Tensor-ESPRIT-type algorithms is novel as well.

It is a particular strength of the framework we use that many extensions and modifications

of ESPRIT are easily incorporated, e.g., Forward-Backward-Averaging (cf. Section 12.4.4),

ESPRIT for strict-sence non-circular sources (cf. Section 12.4.5), or Structured Least Squares

(cf. Section 12.4.6).

12.3. Performance of tensor-based subspace estimation

12.3.1. Review of perturbation results for the SVD

Let us first review the results from [LLV93] which are relevant to the discussion in this section.

Following the model introduced in Chapter 10 we letX =X0+N ∈ CM×N be the measurement

matrix comprisingN subsequent observations fromM channels (X0) under additive noise (N).

Following (10.2) and (10.3), the SVD of X and X0 can be expressed as

X0 = [U s Un] ⋅ ⎡⎢⎢⎢⎢⎣
Σs 0d×(N−d)

0(M−d)×d 0(M−d)×(N−d)

⎤⎥⎥⎥⎥⎦ ⋅ [V s V n]H (12.1)

X = [Û s Ûn] ⋅ ⎡⎢⎢⎢⎢⎣
Σ̂s 0d×(N−d)

0(M−d)×d Σ̂n

⎤⎥⎥⎥⎥⎦ ⋅ [V̂ s V̂ n]H , (12.2)

where the columns of U s ∈ C
M×d provide an orthonormal basis for the signal subspace

which we want to estimate and the “hat” denotes the estimated quantities. Moreover Σs =

diag {[σ1, σ2, . . . , σd]} ∈ Rd×d contains the d non-zero singular values on its main diagonal. We

can write Û s = U s +∆U s, where ∆U s represents the estimation error. At this point, we are
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ready to state the main result on the first order perturbation expansion of ∆U s from [LLV93]

∆U s = Un ⋅Γn +O{∆2} , where ∆ = ∥N∥ and (12.3)

Γn = U
H
n ⋅N ⋅V s ⋅Σ−1s ∈ C(M−d)×d (12.4)

Here ∥.∥ represents an arbitrary sub-multiplicative1 norm, e.g., the Frobenius norm. Equa-

tion (12.4) shows the first order expansion of the signal subspace estimation error ∆U s in

terms of the noise subspace Un, i.e., how much of the noise subspace “leaks into” the signal

subspace due to the estimation errors from the perturbation N . Since it is explicit in N it

makes no assumptions about the statistics of N , in fact, it is purely deterministic.

The expansion (12.4) only models the leakage of the noise subspace into the signal subspace.

That is to say, the perturbation of the particular basis (the columns of U s) is ignored. While

for subspace-based parameter estimation schemes this is indeed sufficient since the particular

choice of the basis is irrelevant, there are other applications where this term matters. For

instance, in a communication system where the channel is decomposed into its individual

eigenmodes and one or several of these eigenmodes are used for transmission, such errors have

a major impact. Therefore, other authors have extended (12.4) to take this error term into

account. For instance, in [LLM08] the authors provide the following expansion

∆U s = Un ⋅Γn +U s ⋅Γs +O{∆2} , where (12.5)

Γs =D ⊙ (UH
s ⋅N ⋅V s ⋅Σs +Σs ⋅V H

s ⋅NH ⋅U s) ∈ Cpr×pr . (12.6)

Here, the matrix D is defined as

[D](k,ℓ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
σ2
ℓ
−σ2

k

k ≠ ℓ

0 k = ℓ
for k, ℓ = 1,2, . . . , d. (12.7)

Equation (12.5) additionally shows the perturbation of the individual singular vectors via

the term U s ⋅ Γs. This term can be dropped for the evaluation of subspace-based parameter

estimation schemes since for these, the particular choice of the basis is irrelevant. Therefore we

do not consider it in Section 12.4 where ESPRIT-type algorithms are investigated. However,

we show its impact in the simulation results in Section 12.5.1 where the subspace estimation

accuracy is evaluated.

1A matrix norm is called submultiplicative if ∥A ⋅B∥ ≤ ∥A∥ ⋅ ∥B∥ for arbitrary matrices A and B.
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12.3.2. Extension to the HOSVD-based subspace estimate

As we have shown in Section 10.2, in the multidimensional case, an improved signal subspace

estimate can be computed via the HOSVD of the measurement tensor X . Since the HOSVD is

obtained from SVDs of the unfoldings, we can apply the same framework to find a perturbation

expansion of the HOSVD-based subspace estimate. Following (10.4) and (10.5), the SVDs of

the r-mode unfoldings of X and the noise-free tensor X 0 are given by

[X 0](r) = [U [s]r U
[n]
r ] ⋅ ⎡⎢⎢⎢⎢⎣

Σ
[s]
r 0d×(M ⋅N/Mr−d)

0(Mr−d)×d 0(Mr−d)×(M ⋅N/Mr−d)

⎤⎥⎥⎥⎥⎦ ⋅ [V
[s]
r V

[n]
r ]H (12.8)

[X ](r) = [Û [s]r Û
[n]
r
] ⋅ ⎡⎢⎢⎢⎢⎣

Σ̂
[s]
r 0d×(M ⋅N/Mr−d)

0(Mr−d)×d Σ̂
[n]
r

⎤⎥⎥⎥⎥⎦ ⋅ [V̂
[s]
r V̂

[n]
r
]H . (12.9)

where Σ
[s]
r = diag {[σ(r)1 , σ

(r)
2 , . . . , σ

(r)
d
]} and r = 1,2, . . . ,R. Note that since (12.8) and (12.9)

are in fact SVDs, we can apply (12.5) and find Û
[s]
r = U

[s]
r +∆U [s]r where

∆U [s]r = U [n]r ⋅Γ[n]r +U [s]r ⋅Γ[s]r +O{∆2} , (12.10)

Γ[n]r = U
[n]H
r ⋅ [N ](r) ⋅V [s]r ⋅Σ[s]−1r , (12.11)

Γ[s]r =Dr ⊙ (U [s]Hr ⋅ [N ](r) ⋅V [s]r ⋅Σ[s]r +Σ[s]r ⋅V [s]Hr ⋅ [N ]H(r) ⋅U [s]r ) and (12.12)

[Dr](k,ℓ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

σ
(r)2

ℓ
−σ
(r)2

k

k ≠ ℓ

0 k = ℓ

for k, ℓ = 1,2, . . . , d. (12.13)

Our goal is to use the perturbation of the r-mode unfoldings to find a corresponding ex-

pansion for the HOSVD-based subspace estimate introduced in Section 10.2. As we have seen

in (10.10), the subspace estimate can be computed via [Û [s]]T(R+1), where
Û
[s]
= Ŝ

[s] ×1 Û [s]1 . . . ×R Û [s]R ×R+1 Σ̂[s]−1R+1 . (12.14)

The crucial point to develop a perturbation expansion for the HOSVD-based subspace esti-

mate [Û [s]]T(R+1) is an algebraic relation to the SVD-based subspace estimate Û s which was

shown in Theorem 10.2.1 in Section 10.2. We restate the relation here for convenience

[Û [s]]T(R+1) = (T̂ 1 ⊗ T̂ 2 ⊗ . . . T̂R) ⋅ Û s, (12.15)
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where T̂ r ∈ C
Mr×Mr represent estimates of the projection matrices onto the r-spaces of X 0,

which are computed via T̂ r = Û
[s]
r Û

[s]H
r .

Equation (12.15) shows that a perturbation expansion for [Û [s]]T(R+1) can be developed based

on the subspaces of all R + 1 unfoldings, as the core tensor is not needed for its computation.

A first order perturbation expansion for the HOSVD-based subspace estimate based on this

idea is summarized in the following proposition.

Proposition 12.3.1. [RBHW09] A first order expansion for [Û [s]]T(R+1) can be expressed

as [Û [s]]T(R+1) = U s + [∆Û [s]]T(R+1) where

[∆Û [s]]T(R+1) = (T 1 ⊗ T 2 ⊗ . . .⊗ TR) ⋅∆U s + ([∆U [s]1 ⋅U [s]H1 ]⊗ T 2 ⊗ . . .⊗ TR) ⋅U s

+ (T 1 ⊗ [∆U [s]2 ⋅U [s]H2 ]⊗ . . .⊗ TR) ⋅U s

+ . . .
+ (T 1 ⊗ T 2 ⊗ . . .⊗ [∆U [s]R ⋅U [s]HR ]) ⋅U s

+O {∆2} , (12.16)

where the SVD-based signal subspace perturbation ∆U s is given by (12.5) and the perturbation

of the r-space can be computed via

∆U [s]r = U [n]r ⋅Γ[n]r = U
[n]
r ⋅U [n]Hr ⋅ [N ](r) ⋅V [s]r ⋅Σ[s]−1r . (12.17)

Proof: cf. Appendix D.10.

Note that while ∆U s in general contains both perturbation terms Un ⋅ Γn and U s ⋅ Γs,

for ∆U
[s]
r the term U

[s]
r ⋅ Γ[s]r cancels. This is not surprising since the r-mode subspaces en-

ter (12.15) only via projection matrices for which the choice of the particular basis is irrelevant.

A special case of this theorem for R = 2 was first shown by us in [RBHW09].

12.4. Performance of ESPRIT-type algorithms

12.4.1. Review of perturbation results for the 1-D Standard ESPRIT

In [LLV93] the authors point out that once a first order expansion of the subspace estimation

error is available it can be used to find a corresponding first order expansion of the estimation

157



12. Performance analysis

error of a suitable parameter estimation scheme. One of the examples the authors show is the

1-D Standard ESPRIT algorithm based on LS, which we use as a starting point to discuss

various ESPRIT-type algorithms in this section. In the noise-free case, the shift invariance

equation for 1-D standard ESPRIT can be expressed as (cf. (11.6))

J1 ⋅U s ⋅Ψ = J2 ⋅U s, (12.18)

where J1,J2 ∈ R
M(sel)

×M are the selection matrices that select the M (sel) elements from the

M antenna elements which correspond to the first and the second subarray, respectively.

Moreover, Ψ = Q ⋅Φ ⋅Q−1, where Φ = diag {[eµ1 , . . . , eµd]} ∈ Cd×d contains the spatial

frequencies µk, k = 1,2, . . . , d that we want to estimate. Therefore, µk = arg {EVk {Ψ}}, i.e.,
the k-th spatial frequency is obtained from the phase of the k-th eigenvalue (EVk {⋅}) of Ψ.

In presence of noise, we only have an estimate Û s of the signal subspace U s. Consequently,

(12.18) does in general not have an exact solution anymore. A simple way of finding an

approximate Ψ̂ is given by the LS solution which can be expressed as

Ψ̂LS = (J1 ⋅ Û s)+ ⋅ J2 ⋅ Û s. (12.19)

To simplify the notation we skip the index “LS” for the remainder of this section (since only

LS is considered) and pick it up again in the next section where we expand the discussion to

SLS.

For the estimation error of the k-th spatial frequency corresponding to the LS solution

from (12.19), [LLV93] provides the following expansion

∆µk = Im{pTk ⋅ (J1 ⋅U s)+ ⋅ [J2/λk − J1] ⋅∆U s ⋅ qk} +O{∆2} (12.20)

where λk = eµk and qk is the k-th column of Q. Moreover, pTk represents the k-th row

vector of the matrix P = Q−1. A sketch of the derivation of (12.20) from [LLV93] is shown

in Appendix D.11. Note that ∆U s can be expanded in terms of the perturbation term N by

directly using the expansion (12.4). The additional term from (12.5) is not needed as it is

irrelevant for the performance of ESPRIT.

12.4.2. Extension to R-D Standard (Tensor-)ESPRIT

The previous result from [LLV93] on the first order perturbation expansion of 1-D Standard

ESPRIT using LS is easily generalized to the R-D case. The reason is that for R-D LS-based
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ESPRIT, the R shift invariance equations are solved independently from each other2. Hence,

the arguments from [LLV93] are readily applied to all modes individually and we directly

obtain a first order expansion for the estimation error of the k-th spatial frequency in the r-th

mode

∆µ
(r)
k
= Im{pTk ⋅ (J̃(r)1 ⋅U s)+ ⋅ [J̃(r)2 /λ(r)k

− J̃(r)1 ] ⋅∆U s ⋅ qk} +O {∆2} (12.21)

where J̃
(r)
1 , J̃

(r)
2 ∈ R

M
Mr
⋅M
(sel)
r ×M are the effective R-D selection matrix for the first and the

second subarray in the r-th mode, respectively. They can be expressed as (cf. (11.5))

J̃
(r)
ℓ = I∏r−1

n=1 Mn
⊗ J(r)

ℓ
⊗ I∏R

n=r+1 Mn
(12.22)

for ℓ = 1,2 and r = 1,2, . . . ,R, where J
(r)
ℓ
∈ R

M
(sel)
r ×Mr are the selection matrices which

select the M
(sel)
r elements belonging to the first and the second subarray in the r-th mode,

respectively, [HN98].

Since this expansion forR-D Standard ESPRIT is explicit in the perturbation of the subspace

estimate and R-D Standard Tensor-ESPRIT only differs in the fact that it uses the enhanced

HOSVD-based subspace estimate, we immediately conclude that a first order perturbation

expansion for R-D Standard Tensor-ESPRIT is given by

∆µ
(r)
k
= Im{pTk ⋅ (J̃(r)1 ⋅U s)+ ⋅ [J̃(r)2 /λ(r)k

− J̃(r)1 ] ⋅ [∆Û [s]]T(R+1) ⋅ qk} +O {∆2} . (12.23)

An explicit expansion of ∆µ
(r)
k

in terms of the noise tensorN is given by inserting the previous

result (12.16).

12.4.3. Mean Square Errors

As explained above, the advantage of the first order perturbation expansion we have discussed

so far is that it is explicit in the perturbation termN (orN ). Hence, it requires no assumptions

about its distribution. However, it is often also desirable to know the mean square error if a

2If the shift invariance equations are solved completely independently, the correct pairing of the parameters
across dimensions has to be found in a subsequent step. This is often avoided by computing the LS solutions
for Ψ(r) independently but then performing a joint eigendecomposition of all R dimensions to yield Φ

(r). This
step is not included in the performance analysis presented in this section, since no performance results on joint
eigendecompositions are available and it appears to be a very difficult task. Moreover, this step has indeed
no impact on the asymptotic estimation error of the spatial frequencies for high SNRs since the eigenvectors
become asymptotically equal. As shown in [LT78] (cf. Appendix D.11), the impact of the perturbation of the
eigenvectors is of second-order and can hence be ignored in a first-order perturbation analysis.
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specific distribution is assumed and the ensemble average over all possible noise realizations is

computed.

The following theorem summarizes the result of performing this task for the special case of

zero mean, circularly symmetric, i.i.d. noise. For simplicity we consider the special case R = 2

for Standard Tensor-ESPRIT, however, a generalization to a larger number of dimensions is

quite straightforward.

Theorem 12.4.1. [RBH10] Assume that the entries of the perturbation term N or N are

mutually uncorrelated, zero mean, circularly symmetric random variables with identical vari-

ance σ2
n. Then, the mean square estimation error for the k-th spatial frequency in the r-th

mode is given by

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ ∥WT

mat ⋅ r(r)k
∥2
2

(12.24)

for R-D Standard ESPRIT and

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ ∥WT

ten ⋅ r(r)k
∥2
2

(12.25)

for 2-D Standard Tensor-ESPRIT3 where k = 1,2, . . . , d and r = 1,2, . . . ,R. The vector r
(r)
k

and the matrices Wmat and W ten are given by

r
(r)
k
= qk ⊗ ([(J̃(r)1 U s)+ (J̃(r)2 /e⋅µ(r)k − J̃(r)1 )]T ⋅ pk) (12.26)

Wmat = (Σ−1s ⋅V T
s )⊗ (Un ⋅UH

n ) (12.27)

W ten = (Σ[s]−13 U
[s]H
3 )⊗ ([T 1 ⊗ T 2]V [n]∗3 V

[n]T
3 )

+ (UT
s ⊗ IM) T̄ 2 (U [s]∗1 Σ

[s]−1
1 V

[s]T
1 ⊗U [n]1 U

[n]H
1 ) ⋅KM2×(M1⋅N)

+ (UT
s ⊗ IM) T̄ 1 (U [s]∗2 Σ

[s]−1
2 V

[s]T
2 ⊗U [n]2 U

[n]H
2 ) where (12.28)

T̄ 1 =

⎡⎢⎢⎢⎢⎢⎢⎣
IM2
⊗ t1,1
⋮

IM2
⊗ t1,M1

⎤⎥⎥⎥⎥⎥⎥⎦
⊗ IM2

, T̄ 2 = IM1
⊗
⎡⎢⎢⎢⎢⎢⎢⎣
IM1
⊗ t2,1
⋮

IM1
⊗ t2,M2

⎤⎥⎥⎥⎥⎥⎥⎦
, (12.29)

and tr,m is the m-th column of T r. Finally, Kp,q is the commutation matrix (cf. eqn. (3.34)).

Proof: cf. Appendix D.12.

3 For R > 2, (12.25) has the same form, however, W ten shown in (12.28) is only developed for R = 2 here.

160



12.4. Performance of ESPRIT-type algorithms

Note that for 1-D Standard ESPRIT, this MSE expression agrees with the one shown

in [LV92]. However, [LV92] does not directly generalize to the tensor case. This is the advan-

tage of the MSE expressions in Theorem 12.4.1 where we only need to replaceWmat byW ten

to account for the enhanced signal subspace estimate. The MSE expressions in Theorem 12.4.1

were already shown by us in [RBH10]. However, due to space limitations, a proof for them

was not included there.

12.4.4. Incorporation of Forward-Backward-Averaging

So far we have shown the explicit expansion and the MSE expressions for R-D Standard

ESPRIT and R-D Standard Tensor-ESPRIT. In order to extend these results to Unitary-

ESPRIT-type algorithms we need to incorporate the mandatory preprocessing for Unitary

ESPRIT which is given by Forward-Backward-Averaging.

As discussed in Section 10.3, Forward-Backward-Averaging augments the N observations of

the sampled R-D signal by N new “virtual” observations which are a conjugated and row- as

well as column-flipped version of the original ones [HN95]. This can be expressed in matrix

form as shown in (10.12), which we restate here for convenience

X(fba) = [X ΠM ⋅X∗ ⋅ΠN] ∈ CM×2N . (12.30)

Inserting X =X0 +N we find

X(fba) = [X0 ΠM ⋅X∗0 ⋅ΠN] + [N ΠM ⋅N∗ ⋅ΠN] =X(fba)0 +N (fba). (12.31)

However, the latter relation shows that we are interested in the perturbation of the subspace

of a matrix X
(fba)
0 superimposed by an additive perturbation N (fba), which is small. Since

the explicit perturbation expansion we have used up to this point requires no additional as-

sumptions, the surprisingly simple answer is that we do not need to change anything but we

can apply the previous results directly. All we need to do is to replace all exact (noise-free)

subspaces of X0 by the corresponding subspaces of X
(fba)
0 . From (12.21), we immediately

obtain the following explicit first-order expansion which is valid for R-D Standard ESPRIT

with Forward-Backward Averaging

∆µ
(r)
k
= Im{p(fba)T

k
⋅ (J̃(r)1 ⋅U (fba)s )+ ⋅ [J̃(r)2 /λ(r)k

− J̃(r)1 ] ⋅∆U (fba)s ⋅ q(fba)
k
} +O {∆2} (12.32)
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where ∆U
(fba)
s is given by

∆U (fba)s = U (fba)n ⋅U (fba)Hn ⋅N (fba) ⋅V (fba)s ⋅Σ(fba)−1s (12.33)

and U
(fba)
s , U

(fba)
n , V

(fba)
s , Σ

(fba)
s correspond to the signal subspace, the noise subspace, the

row space, and the singular values of X
(fba)
0 , respectively. Likewise, q

(fba)
k

and p
(fba)
k

represent

the corresponding versions of qk and pk if U s is replaced by U
(fba)
s in the shift invariance

equations.

The second step in Unitary ESPRIT is the transformation into the real-valued domain.

However, as the following theorem shows, this step has no impact on the performance for high

SNRs.

Theorem 12.4.2. The first-order perturbation for the estimation error in the spatial fre-

quencies ∆µk for Unitary ESPRIT is equal to the corresponding error for Standard ESPRIT

including forward-backward averaging.

Proof: cf. Appendix D.13.

Therefore, the asymptotic performance of Unitary-ESPRIT-type algorithms is found once

Forward-Backward-Averaging is taken into account and the real-valued transformation can be

ignored. Consequently, the expansion shown in (12.32) is valid for R-D Unitary ESPRIT.

With the same reasoning, an explicit expansion for R-D Unitary Tensor-ESPRIT is obtained

by consistently replacing X 0 by X
(fba)
0 in (12.23), i.e.,

∆µ
(r)
k
= Im{p(fba)T

k
⋅ (J̃(r)1 ⋅U (fba)s )+ ⋅ [J̃(r)2 /λ(r)k

− J̃(r)1 ] ⋅ [∆Û [s](fba)]T(R+1) ⋅ q(fba)k
} +O {∆2} .

(12.34)

where X
(fba)
0 can be expressed in tensor notation as

X
(fba)
0 = [X 0 R+1 X

∗

0 ×1 ΠM1
. . . ×R ΠMR

×R+1 ΠN ] (12.35)

The situation changes slightly if mean square error expressions are considered since the

Forward-Backward-Averaging does have an impact on the statistics of the perturbation N .

The following theorem summarizes the corresponding MSE results:

Theorem 12.4.3. Assume that the entries of the perturbation term N or N are mutually

uncorrelated, zero mean, circularly symmetric random variables with identical variance σ2
n.

Then, the mean square estimation error for the k-th spatial frequency in the r-th mode is given
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by

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ (∥W (fba)T

mat ⋅ r(r)(fba)
k

∥2
2

−Re{r(r)(fba)T
k

⋅W (fba)
mat ⋅Π2MN ⋅W (fba)T

mat ⋅ r(r)(fba)
k

})
(12.36)

for R-D Unitary ESPRIT and

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ (∥W (fba)T

ten ⋅ r(r)(fba)
k

∥2
2

−Re{r(r)(fba)T
k

⋅W (fba)
ten ⋅Π2MN ⋅W (fba)T

ten ⋅ r(r)(fba)
k

})
(12.37)

for 2-D Unitary Tensor-ESPRIT, where r
(r)(fba)
k

, W
(fba)
mat , andW

(fba)
ten are computed as in The-

orem 12.4.1 by consistently replacing all quantities by their forward-backward-averaged equiv-

alents.

Proof: cf. Appendix D.14.

We observe that due to the Forward-Backward-Averaging, an additional term must be added

to the MSE expressions. However, the first term still has a similar form than in the case of

R-D Standard (Tensor-)ESPRIT. The MSE expressions in Theorem 12.4.3 were already shown

by us in [RBH10]. However, due to space limitations, a proof for them was not included there.

It is important to note that Theorem 12.4.2 and 12.4.3 relate to the LS solution only. If

TLS is used instead, the equivalence of Standard ESPRIT with Forward-Backward-Averaging

and Unitary ESPRIT is shown in [HN95].

12.4.5. Extension to other ESPRIT-type algorithms

In a similar manner as in the previous section, other ESPRIT-type algorithms can be analyzed.

For instance, the NC Standard ESPRIT and NC Unitary ESPRIT algorithm for strict-sense

non-circular sources (cf. Section 11.5) are based on a different kind of preprocessing where

instead of augmenting the columns we augment the rows of the measurement matrix. Yet,

the explicit first order perturbation expansion still applies since the result can be written as

a noise-free (augmented) measurement matrix superimposed by a small (augmented) pertur-

bation matrix. Consequently, for the explicit expansion we only need to consistently replace

the quantities originating from the SVD of X0 by the corresponding quantities from the ap-

propriately preprocessed measurement matrix X
(nc)
0 . However, for the evaluation of the mean

square error, the altered noise statistics have to be taken into account.

Another possible extension is to incorporate spatial smoothing. As discussed in Section 10.3,
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if sources are mutually coherent, preprocessing must be applied to the data to decorrelate the

sources prior to any subspace-based parameter estimation scheme. Via Forward-Backward-

Averaging, two sources can be decorrelated. However, if more than two sources are coherent

(or if FBA cannot be applied), additional preprocessing is needed. For spatial smoothing we di-

vide the array into a number of identical displaced subarrays and average the spatial covariance

matrix over these subarrays. Since the number of subarrays we choose is a design parameter

influencing the performance, investigating its effect by virtue of an analytical performance

assessment would be desirable. Note that the spatial averaging introduces a correlation into

the noise. Therefore, the presented framework is particularly attractive since for the explicit

expansion, no assumptions about the noise statistics are needed. A further extension is the

performance assessment of tensor-based schemes for spatial smoothing. We have introduced

a tensor-based formulation of spatial smoothing for R-D signals in [HRD08]. Moreover, a

tensor-based spatial smoothing technique for 1-D damped and undamped harmonic retrieval

with a single snapshot is shown in [THG09b]. The extension to multiple snapshots is in-

troduced in [THRG10] and an R-D extension is shown in [THG09a]. A major advantage of

[THRG10, THG09a] is that the performance of the ESPRIT-type parameter estimates is al-

most independent of the choice of the subarray size. This could be verified by analytical results

if the performance analysis is extended accordingly.

12.4.6. Incorporation of Structured Least Squares

So far, all performance results are based on ESPRIT using LS, i.e., the overdetermined shift

invariance equations are solved using LS only. As discussed in Section 11.7, the LS solution to

the shift invariance equation is in general suboptimal as errors on both sides of the equations

need to be taken into account. Even more so, since for overlapping subarrays, the shift invari-

ance equation has a specific structure resulting in common error terms on both sides of the

equations, this structure should be taken into account when solving them. The corresponding

SLS procedure is discussed in Section 11.7.

Since it has been shown that the resulting ESPRIT algorithm using SLS outperforms ES-

PRIT using LS and TLS for overlapping subarrays [Haa97b], it is desirable to extend our

performance analysis results to SLS-based ESPRIT as well.

Due to the fact that our analysis is asymptotic in the SNR we can make the following simpli-

fying assumptions for SLS. Firstly, we consider only a single iteration. Not only does this follow

the suggestion made in [Haa97b], it is also optimal for high SNRs, since the underlying cost

function is quadratic but actually asymptotically linear (the quadratic term vanishes against

the linear terms for high SNRs). Secondly, we do not consider the optional regularization term
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in SLS (i.e., we set the corresponding regularization parameter α to infinity) as regularization

is typically not needed for high SNRs.

Under these conditions we derive the following results on the estimation error of ESPRIT

using SLS.

Theorem 12.4.4. A first order expansion of the estimation error of 1-D Standard ESPRIT

using SLS is given by

∆µk,SLS = Im{rTk,SLS ⋅ vec{∆U s}} +O{∆2} (12.38)

= Im{rTk,SLS ⋅Wmat ⋅ vec{N}} +O{∆2} (12.39)

where Wmat is defined in (12.27) and rTk,SLS is given by

rTk,SLS = q
T
k ⊗ [pTk ⋅ (J1 ⋅U s)+ ⋅ ( J2

eµk
− J1)] − (qTk ⊗ [pTk ⋅ (J1 ⋅U s)H

eµk
]) ⋅ (F SLS ⋅FH

SLS)−1 ⋅WR,U

WR,U = (ΨT ⊗ J1) + Id ⊗ (J1 ⋅U s (J1 ⋅U s)+ ⋅ J2) −ΨT ⊗ (J1 ⋅U s (J1 ⋅U s)+ ⋅ J1) − (Id ⊗ J2)
F SLS = [Id ⊗ (J1 ⋅U s) , (ΨT ⊗ J1) − (Id ⊗ J2)]
for k = 1,2, . . . , d. The MSE for zero mean, circularly symmetric i.i.d. noise samples with

variance σ2
n can then be computed via

E{(∆µk,SLS)2} = σ2
n

2
⋅ ∥WT

mat ⋅ rk,SLS∥22 . (12.40)

Proof: Equation (12.39) is shown in Appendix D.15. Since the explicit expansion of (12.39)

has the same form as the explicit expansion in (12.20), the MSE expression (12.40) is shown

analogously to Theorem 12.4.1 as presented in Appendix D.12. Note that the first-order

expansion and the corresponding MSE expressions in Theorem 12.4.4 were already shown by

us in [RH11]. However, due to space limitations, a proof for them was not included there.

12.4.7. Special case: Single source

Even though we have already found comparably compact MSE expressions for different kinds

of ESPRIT-type algorithms, they are still too complicated to provide actual insights into the

differences of various ESPRIT-type algorithms. As they are deterministic, they can be plotted

for varying system parameters without performing Monte-Carlo simulations and one can learn

from these plots under which conditions the performance changes how much.

However, it would be desirable to find expressions that are even more insightful. The biggest
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disadvantage of the MSE expressions in their current form is that they are formulated in terms

of the subspaces of the noise-free observation matrix and not in terms of the actual parameters

with a physical significance, such as, the number of sensors or the positions of the sources.

Finding such a formulation in the very general case seems to be impossible given the com-

plicated algebraic nature in which the MSE expressions depend on the physical parameters.

However, it becomes much easier if some special cases are considered. Therefore we present

one example of such a special case in this section, namely, the case of a single source captured

by a uniform linear array (ULA) and a uniform rectangular array (URA). Although this is a

very trivial case, it serves as an example which types of impact such an analytical performance

assessment can provide. The following theorem summarizes our results for the 1-D case (ULA).

Theorem 12.4.5. For a single source (d = 1) and a uniform linear array of M sensors, the

mean square estimation error of the spatial frequency for Standard ESPRIT and for Unitary

ESPRIT is given by

E{(∆µ)2} = 1

ρ̂
⋅ 1(M − 1)2 +O { 1

ρ̂2
} (12.41)

Moreover, the deterministic Cramér-Rao Bound can be simplified into

CRB =
1

ρ̂
⋅ 6

M ⋅ (M2 − 1) (12.42)

Consequently, the asymptotic efficiency is given by

η = lim
ρ̂→∞

CRB

E{(∆µ)2} = 6(M − 1)
M(M + 1) . (12.43)

Here, ρ̂ represents the effective SNR given by ρ̂ = P̂T⋅N
σ2
n

, where P̂T is the empirical transmit

power given by P̂T = ∥S∥2F /N if S is the matrix of source symbols.

Proof: cf. Appendix D.16.

Note that [RH89a] provide an MSE expression for ESPRIT for the case of a single source

which scales with 1/M2 and is derived under the assumption of high “array SNR” P ⋅M/σ2
n,

i.e., it is asymptotic also in M . The result presented here is accurate for small values of M as

well and only asymptotic in the effective SNR N ⋅PT/σ2
n. Also note that analytical expression

for the stochastic Cramér-Rao Bound for one and two sources are available in [Smi05].

We can simplify the MSE expression for ESPRIT using SLS shown in Section 12.4.6 in a

similar manner. The following theorem summarizes the result.
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Theorem 12.4.6. For a single source (d = 1) and a uniform linear array of M sensors, the

mean square estimation error of the spatial frequency for Standard ESPRIT using SLS is given

by

E{(∆µ)2} = 1

ρ̂
⋅ 6 ⋅ M4 − 2M3 + 24M2 − 22M + 23

M(M2 + 11)2(M − 1)2 +O { 1

ρ̂2
} (12.44)

Consequently, the asymptotic efficiency is given by

η = lim
ρ̂→∞

CRB

E{(∆µ)2} = (M2 + 11)2(M − 1)(M + 1)(M4 − 2M3 + 24M2 − 22M + 23)
=
M5 −M4 + 22M3 − 22M2 + 121M − 121
M5 −M4 + 22M3 + 2M2 +M + 23 (12.45)

Proof: cf. Appendix D.17.

Moreover, for the 2-D case we have the following theorem for ESPRIT using LS.

Theorem 12.4.7. [RBH10] For a single source (d = 1) and a uniform rectangular array of

M1 ×M2 sensors, the mean square estimation error of the spatial frequency for 2-D Standard

ESPRIT, 2-D Standard Tensor-ESPRIT, 2-D Unitary ESPRIT, and 2-D Unitary Tensor-

ESPRIT is given by

E{(∆µ(1))2 + (∆µ(2))2} = 1

ρ̂
⋅ ( 1(M1 − 1)2 ⋅M2

+ 1

M1 ⋅ (M2 − 1)2) +O {
1

ρ̂2
} (12.46)

Moreover, the deterministic Cramér-Rao Bound can be simplified into

CRB = trace{C} = 1

ρ̂
⋅ ( 6

M ⋅ (M2
1 − 1) +

6

M ⋅ (M2
2 − 1)) . (12.47)

Proof: in Appendix D.18 we derive MSE expressions for R-D Standard ESPRIT, R-D Uni-

tary ESPRIT, and the Cramér-Rao Bound for the more general R-D case. From these, this

theorem follows by setting R = 2. Moreover, we show the identity of R-D Standard Tensor-

ESPRIT and R-D Unitary Tensor-ESPRIT with R-D Standard ESPRIT for R = 2. Note

that the simplified MSE expressions in Theorem 12.4.7 were already shown by us in [RBH10].

However, due to space limitations, a proof could not be included there.

These three theorems provide some very interesting insights. Firstly, they show that for

a single source there is neither an improvement in terms of the estimation accuracy from

applying Forward-Backward-Averaging nor from the HOSVD-based subspace estimate. This

is surprising at first sight since the HOSVD-based subspace estimate itself is more accurate
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for a single source.

Moreover, they show that the asymptotic efficiency can be explicitly computed and that it is

only a function of the array geometry, i.e., the number of sensors in the array. The outcome of

this analysis is that ESPRIT-type algorithms using LS are asymptotically efficient for M = 2,3

in the 1-D case and M1 ∈ [2,3], M2 ∈ [2,3] in the 2-D case. However, they become less and less

efficient when the number of sensors grows, in fact, for M →∞ we even have η → 0. A possible

explanation for this phenomenon could be that an M -sensor ULA offers not only the one shift

invariance used in LS (the first and last M − 1 sensors) but multiple invariances [SORK92],

which are not fully exploited by LS.

On the other hand, for ESPRIT using SLS, the asymptotic efficiency is in general higher, in

fact, for a ULA we have η → 1 as M →∞ for a single source. Moreover, even for limited M ,

η is never far away from 1. As we show in Section 12.5.4, we have η = 1 for M = 2,3 and the

smallest value of η is obtained for M = 5 where η = 36/37 ≈ 0.973 for d = 1.

12.5. Numerical results

In this section we show numerical results to demonstrate the asymptotic behavior of the

analytical performance assessment presented in this chapter. We first investigate the subspace

estimation accuracy in order to verify Proposition 12.3.1. Note that the analytical results for

the subspace estimates are explicit expansions in terms of the perturbation (i.e., the additive

noise). Therefore, we repeat the experiment with a number of randomly generated realizations

of the noise and perform Monte-Carlo averaging over the analytical expansions. These “semi-

analytical” results are then compared with purely empirical results where we estimate the

subspace via an SVD or a HOSVD and compute the estimation error compared to the true

signal subspace.

The subsequent numerical results demonstrate the performance of ESPRIT-type parameter

estimation schemes. Here, we compute the mean square estimation error in three different

ways. Firstly, analytically, via the MSE expressions provided in Theorem 12.4.1, Theo-

rem 12.4.3, Theorem 12.4.4, Theorem 12.4.5, Theorem 12.4.6, and Theorem 12.4.7, repec-

tively. Secondly, semi-analytically, by performing Monte-Carlo averaging over the explicit

first-order expansions provided in equation (12.23), (12.32), and (12.39), respectively. Thirdly,

empirically, by estimating the spatial frequencies via the corresponding ESPRIT-type algo-

rithms and comparing the estimates to the true spatial frequencies.

For all the simulations we assume a known number of planar wavefronts impinging on

an antenna array of M istrotropic sensor elements. We assume uniform λ/2 spacing in all
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dimensions, i.e., an M -element uniform linear array (ULA) in the 1-D case and an M1 ×M2

uniform rectangular array (URA) in the 2-D case. The sources emit narrow-band waveforms

si(t) modeled as complex Gaussian distributed symbols si[n] and we observe N subsequent

snapshots n = 1,2, . . . ,N . All sources are assumed to have unit power, i.e., E{∣si[n]∣2} = 1.

In the case where source correlation is investigated we generate the symbols si[n] such that

E{si[n] ⋅ sj[n]∗} = ρ ⋅ eϕi,j for i ≠ j = 1,2, . . . , d, where ρ is the correlation coefficient between

each pair of sources and ϕi,j is a uniformly distributed correlation phase. The additive noise is

generated according to a circularly symmetric complex Gaussian distribution with zero mean

and variance σ2
n and noise samples are assumed to be mutually independent. Therefore, the

Signal to Noise Ratio (SNR) is defined as 1/σ2
n.

12.5.1. Subspace estimation accuracy

We evaluate the subspace estimation accuarcy by computing the Frobenius norm of the sub-

space estimation error, i.e., ∥∆U s∥2F in the matrix case and ∥[∆U [s]]T(R+1)∥2
H

in the tensor

case.

In order to find the estimation error empirically, we obtain a subspace estimate Û s via an

SVD of the noisy observation and then compare it to the true subspace U s column by column.

The estimation error of the n-th column is computed via

∆un = ûn ⋅ ûH
nun∣ûH
nun∣ −un, n = 1,2, . . . , d (12.48)

to account for the inherent phase ambiguity in each column of the SVD, cf. [LLM08].

For the analytical estimation error we calculate ∆U s via the first-order expansion ∆U s ≈

Un ⋅Γ[n] provided in (12.4) and the expansion ∆U s ≈ Un ⋅Γ[n]+U s ⋅Γ[s] provided in (12.5), re-

spectively. Note that the latter is more accurate since it additionally considers the perturbation

of the individual singular vectors, i.e., the particular choice of the basis for the signal subspace.

However, this contribution is irrelevant for the performance of ESPRIT-type algorithms.

Figure 12.1 shows the results for a scenario where we consider two uncorrelated and closely

spaced sources. Their spatial frequencies are given by µ
(1)
1 = µ

(2)
1 = 1 and µ

(1)
2 = µ

(2)
2 = 0.95. A

5× 5 URA is considered and N = 20 snapshots are taken. In Figure 12.2 we have d = 3 sources

positioned at µ
(1)
1 = 0.7, µ

(1)
2 = 0.9, µ

(1)
3 = 1.1, µ

(2)
1 = −0.1, µ(2)2 = −0.3, µ(2)3 = −0.5 and mutually

correlated with a correlation coefficient of ρ = 0.97. Moreover, the array size is increased to an

8×8 URA. For the third simulation result shown in Figure 12.3 we consider d = 4 uncorrelated

sources located at µ
(1)
1 = −1.5, µ

(1)
2 = 0.5, µ

(1)
3 = 1.0, µ

(1)
4 = −0.3, µ

(2)
1 = 1.3, µ

(2)
2 = −0.2,
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Figure 12.1.: Subspace estimation accuracy using Γ[n] only vs. using Γ[n] and Γ[s]. Scenario:
two closely spaced sources (µ

(1)
1 = µ

(2)
1 = 1 and µ

(1)
2 = µ

(2)
2 = 0.95), a 5 × 5 URA, and N = 20

snapshots.
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Figure 12.2.: Subspace estimation accuracy using Γ[n] only vs. using Γ[n] and Γ[s]. Scenario:
d = 3 correlated sources (ρ = 0.97) at µ

(1)
1 = 0.7, µ

(1)
2 = 0.9, µ

(1)
3 = 1.1, µ

(2)
1 = −0.1, µ(2)2 =

−0.3, µ(2)3 = −0.5, an 8 × 8 URA, and N = 20 snapshots.
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Figure 12.3.: Subspace estimation accuracy using Γ[n] only vs. using Γ[n] and Γ[s]. Scenario:
d = 4 uncorrelated sources at µ

(1)
1 = −1.5, µ(1)2 = 0.5, µ

(1)
3 = 1.0, µ

(1)
4 = −0.3, µ(2)1 = 1.3,

µ
(2)
2 = −0.2, µ(2)3 = 0.7, µ

(2)
4 = −1.5, an 8 × 8 URA, and N = 5 snapshots.

µ
(2)
3 = 0.7, µ

(2)
4 = −1.5 and N = 5 snapshots.

All three simulations show that the empirical estimation errors agree with the analytical

results as the SNR tends to infinity. Therefore, the improvement obtained by the HOSVD-

based subspace estimate can be reliably predicted via the analytical expressions. In general,

it is particularly pronounced for correlated sources and for a small number of snapshots.

Moreover, while for two closely-spaced sources and for three correlated sources, the impact of

the additional term U s ⋅ Γ[s] is negligibly small, it is clearly visible for the four uncorrelated

sources shown in Figure 12.3.

12.5.2. R-D Tensor-ESPRIT

The following set of simulation results demonstrates the performance of R-D matrix-based

and tensor-based ESPRIT. As explained in the beginning of this section, for the analytical

results we use Theorem 12.4.1 for R-D standard ESPRIT and R-D standard Tensor-ESPRIT

and Theorem 12.4.3 for R-D Unitary ESPRIT and R-D Unitary Tensor-ESPRIT, respectively.

Likewise, the semi-analytical results are obtained by Monte-Carlo averaging of the explicit

first-order expansion provided in (12.23) and (12.32), respectively.
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Figure 12.4.: Performance of 2-D SE, STE, UE, UTE for d = 2 highly correlated sources

(ρ = 0.9999) located at µ
(1)
1 = 1, µ

(1)
2 = −0.5, µ(2)1 = −0.5, and µ

(2)
2 = 1, a 5 × 6 URA, and

N = 20 snapshots.
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Figure 12.5.: Performance of 2-D SE, STE, UE, UTE for d = 3 correlated sources (ρ = 0.97)

positioned at µ
(1)
1 = 0.7, µ

(1)
2 = 0.9, µ

(1)
3 = 1.1, µ

(2)
1 = −0.1, µ(2)2 = −0.3, µ(2)3 = −0.5, an 8 × 8

URA, and N = 20 snapshots.
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For Figure 12.4 we employ a 5 × 6 URA and collect N = 20 snapshots from two sources

located at µ
(1)
1 = 1, µ

(1)
2 = −0.5, µ(2)1 = −0.5, and µ

(2)
2 = 1. The sources are highly correlated

with a correlation of ρ = 0.9999. On the other hand, for Figure 12.5 we incease the number of

sources to d = 3 and the correlation coefficient to ρ = 0.97. Moreover, the spatial frequencies

of the sources are given by µ
(1)
1 = 0.7, µ

(1)
2 = 0.9, µ

(1)
3 = 1.1, µ

(2)
1 = −0.1, µ(2)2 = −0.3, µ(2)3 = −0.5

and we use an 8 × 8 URA.

To enhance the legibility, we show the semi-analytical estimation errors only in Figure 12.4

since they always agree with the analytical results, as expected. Moreover, the empirical

estimation errors agree with the analytical ones for high SNRs. This is also expected as the

performance analysis framework presented here is asymptotically accurate for high effective

SNRs. We conclude that the improvement in terms of estimation accuracy for Tensor-ESPRIT-

type parameter estimation schemes can be reliably predicted via the analytical expressions we

have derived.

12.5.3. Structured Least Squares

The next set of simulation results illustrates the analytical expressions for ESPRIT using SLS.

The semi-analytical MSE is obtained by Monte-Carlo averaging over the explicit expansion

provided in (12.39) and the analytical MSE is computed via Theorem 12.4.4. For the empirical

estimation errors we perform a single iteration of the Structured Least Squares algorithm and

do not use regularization (i.e., the regularization parameter α is set to ∞).

The first simulation result is shown in Figure 12.6. Here we consider N = 3 snapshots from

d = 4 uncorrelated sources captured by an M = 8 element uniform linear array. The sources’

spatial frequencies are given by µ1 = 1.0, µ2 = 0.7, µ3 = −0.6, µ4 = −0.3. Note that since N < d,

we cannot apply standard ESPRIT, therefore, only Unitary ESPRIT is used. On the other

hand, in the second scenario we consider N = 10 snapshots from d = 3 sources that are mutually

correlated with a correlation coefficient of ρ = 0.99. The sources are located at µ1 = 1, µ2 = 0,

µ3 = −1 and a M = 12 element ULA is used. The corresponding estimation errors are shown

in Figure 12.7.

As before, the empirical results agree with the analytical results for high SNRs. More-

over, the improvement in MSE obtained via SLS is particularly pronounced for the correlated

sources. However, even the very slight improvement which is present for four uncorrelated

sources can be reliably predicted via the analytical MSE expressions we have derived.
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Figure 12.6.: Performance of LS-ESPRIT vs. SLS-ESPRIT for 4 sources at µ1 = 1.0, µ2 =

0.7, µ3 = −0.6, µ4 = −0.3, an M = 8 ULA, N = 3 shapshots.
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Figure 12.7.: Performance of LS-ESPRIT vs. SLS-ESPRIT for d = 3 correlated sources (ρ =
0.99) at µ1 = 1, µ2 = 0, µ3 = −1, a M = 12 ULA and N = 10 shapshots.
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12.5.4. Asymptotic efficiency for a single source

The final set of simulation results demonstrates the special case of a single source, in which

case the MSE expressions can be simplified to very compact closed-form expressions which

only depend on the physical parameters, i.e., the array size and the SNR.

Figures 12.8 and 12.9 show the MSE vs. the number of sensors M for a (1-D) Uniform Linear

Array and vs. M1 for a (2-D) M1 ×M1 Uniform Rectangular Array, respectively. For both

scenarios, the spatial frequencies of the single source were drawn randomly (note that they

have no impact on the MSE). The effective SNR was set to 25 dB for Figure 12.8 (PT = 1, σ
2
n =

0.032,N = 10) and to 46 dB for Figure 12.9 (PT = 1, σ
2
n = 10

−4,N = 4), respectively.

For both plots we observe that LS-ESPRIT is asymptotically efficient for M = 2 and M = 3

(which, in the 2-D case means, a 3 × 3 URA) and then becomes increasingly inefficient as the

array size grows. Moreover, for the 1-D case we see that SLS-based ESPRIT is in fact very

close to the Cramér-Rao Bound, which may, at first sight, lead to believe that the asymptotic

efficiency is in fact 1 for all M . However, as we have shown it is in fact slightly lower than

one. Therefore, we provide two additional figures where we depict the “asymptotic efficiency”,

i.e., we divide the CRB by the corresponding value of the MSE. The resulting efficiency plot is

shown on the left-hand side of Figure 12.10. Moreover, a zoom on the same figure is provided

on the right-hand side. This plot shows more clearly that LS-ESPRIT becomes increasingly

inefficient for M > 3, whereas SLS-ESPRIT approaches η = 1 for large M . The worst efficiency

is found for M = 5 where we have η = 36/37 ≈ 0.973.
12.6. Summary

In this chapter we have discussed a framework for analytical performance assessment of

subspace-based parameter estimation schemes. It is based on earlier results on an explicit

first-order expansion of the SVD and its application to 1-D versions of subspace-based pa-

rameter estimation schemes, e.g., ESPRIT. We have extended this framework in a number of

ways. Firstly, we have derived an explicit first-order expansion of the HOSVD-based subspace

estimate which is the basis for Tensor-ESPRIT-type algorithms. However, it can be applied to

enhance other subspace-based parameter estimation schemes as well. As an important side-

result we have established a fundamental link between the SVD-based subspace estimate and

the HOSVD-based subspace estimate via a Kronecker-structured projection matrix. In addi-

tion to its insightful interpretation, this link can be used for other purposes, e.g., tensor-based

subspace tracking.

Secondly, we have shown that the first-order expansion for 1-D Standard ESPRIT can be
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Figure 12.8.: Performance of LS-ESPRIT and SLS-ESPRIT for a single source vs. the number
of sensors M (M -ULA) at an effective SNR of 25 dB (PT = 1, σ

2
n = 0.032,N = 10).
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Figure 12.9.: Performance of LS-ESPRIT for a single source vs. M1 using an M1 ×M1 URA
at an effective SNR of 46 dB (PT = 1, σ

2
n = 10

−4,N = 4).
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Figure 12.10.: Asymptotic efficiency of LS-ESPRIT and SLS-ESPRIT vs. M . Same scenario
as in Figure 12.8. The right-hand side shows a zoom on the region where η is close to one.

extended to other ESPRIT-type algorithms, e.g., R-D Standard ESPRIT, R-D Unitary ES-

PRIT, R-D Standard Tensor-ESPRIT, R-D Unitary Tensor-ESPRIT, NC Standard ESPRIT,

or NC Unitary ESPRIT.

Thirdly, we have derived a corresponding first-order expansion for Structured Least Squared

(SLS)-based ESPRIT-type algorithms.

All these expansions have in common that they are explicit, i.e., no assumption about the

statistics of either desired signal or additive perturbation need to be made. We only require

the perturbation to be small compared to the desired signal.

Our fourth contribution is to show that the mean square error can readily be computed in

closed-form if we assume zero mean circularly symmetric white noise. Note that we do not

need the noise to be Gaussian distributed. The corresponding MSE expressions are asymptotic

in the effective SNR, i.e., they become accurate as either the noise variance goes to zero or

the number of observations goes to infinity. Therefore, in contrast to existing results based on

[Bri75] which require N to be large, they even apply to the single snapshot (N = 1) case.

As a final contribution we have investigated the special case of a single source and uniform

(1-D) or rectangular (2-D) arrays. In this case we have been able to show analytically, that

R-D standard ESPRIT, R-D Unitary ESPRIT, and (for R = 2) R-D standard Tensor-ESPRIT

as well as R-D Unitary Tensor-ESPRIT yield the same MSE, which only depends on the

effective SNR and the number of antenna elements. We have also shown that SLS-based 1-D

standard ESPRIT has a lower MSE which is also expressed explicitly as a function of the

effective SNR and the number of antenna elements. Concerning the asymptotic efficiency, this
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study has shown that LS-based ESPRIT is efficient only for two and three sensor elements and

then becomes increasingly inefficient as the number of antennas grows. In contrast to this,

SLS-based ESPRIT yields an asymptotic efficiency very close to one for all array sizes.
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13.1. Summary of contributions

In this part of the thesis, multi-dimensional subspace-based parameter estimation was dis-

cussed. We have shown how subspace-based parameter estimation schemes can be improved

by exploiting the specific structure of the signal of interest. We have chosen the family of

ESPRIT-type algorithms to demonstrate the enhancements, however, they can be applied to

many different subspace-based parameter estimation schemes as well. A summary of the vari-

ous ESPRIT-type methods is shown in Table 13.1. The column “proposed” shows the reference

where the algorithm was originally proposed, the column “performance analysis” lists the ref-

erence where an analytical performance assessment was first discussed. Here “(open)” means

that up to now no performance analysis has been published. Table 13.2 provides the same

overview for the various approaches to solve the overdetermined shift invariance equations of

ESPRIT-type algorithms.

Based on these tables it is easy to identify the main contributions as well as the open aspects.

The main contributions are:

• The HOSVD-based subspace estimate ([RHD06], [HRD08]), which provides an enhanced

version of the signal subspace by exploiting the multilinear structure of the data via a

more efficient denoising. It can be applied to enhance arbitrary existing multidimensional

subspace-based parameter estimation schemes.

Performance analysis
Algorithm Proposed based on

[Bri75] [LLV93]
1-D Standard ESPRIT [RPK86] [RH89b] [LLV93], ...
1-D Unitary ESPRIT [HN95] [MHZ96] [RBH10]
R-D Unitary ESPRIT [HN98] [MHZ96] (2-D) [RBH10]
R-D Standard/Unitary Tensor-ESPRIT [HRD08] [RBHW09, RBH10]
1-D NC Standard ESPRIT [ZCW03] = 1-D NC Unitary ESPRIT, cf. Sec. 11.5.2
R-D NC Unitary ESPRIT [HR04] (open)
R-D NC Standard/Unitary Tensor-ESPRIT [RH09b] (open)

Table 13.1.: Overview of ESPRIT-type algorithms and their performance analysis
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Performance analysis
Algorithm Proposed based on

[Bri75] [LLV93]
Least Squares (LS) [RPK86] [RH89b] [LLV93]
Total Least Squares (TLS) [RK87] [RH89b, OVK91]
1-D Structured Least Squares (SLS) [Haa97b] [RH11]
R-D Structured Least Squares (SLS) [Haa97b] (open)
Tensor-Structure SLS [RH07b] (open)

Table 13.2.: Overview of Least-Squares algorithms to solve the invariance equations of ESPRIT-
type algorithms and their performance analysis

• The link between the HOSVD-based subspace estimate and the SVD-based subspace

estimate ([RBHW09]) which is introduced in Theorem 10.2.1 which provides a solid ana-

lytical explanation why and under which conditions the HOSVD-based subspace estimate

yields an enhanced signal subspace estimate. Moreover, it shows that the core tensor in

the HOSVD is not needed which greatly simplifies the performance analysis.

• The R-D Tensor-ESPRIT-type algorithms R-D Standard Tensor-ESPRIT and R-D Uni-

tary Tensor-ESPRIT ([HRD08]) which are summarized in Section 11.4. The tensor

formulation of the algorithms is more natural and hence simpler than in the matrix case.

It leads to similar results as for matrix-based ESPRIT except for the fact that the SVD-

based subspace estimate is replaced by the improved HOSVD-based subspace estimate

(cf. Theorem 11.4.2). Since the latter is easily computed via the structured projection

shown in Theorem 10.2.1, existing implementations of R-D ESPRIT-type algorithms can

be upgraded without large effort.

• The Tensor-Structure SLS algorithm [RH07b] which is shown in Section 11.7. It allows to

benefit from the tensor structure even further in the step where the invariance equations

are solved. TS-SLS can be combined with arbitrary R-D ESPRIT-type algorithms and

provides an additional improvement in terms of the estimation accuracy, even in the

cases where the HOSVD-based subspace estimate coincides with the SVD-based subspace

estimate, i.e., if d ≥ max
r=1,2,...,R

(Mr).
• The R-D ESPRIT-algorithms for strict-sense non-circular sources R-D NC Standard

ESPRIT and R-D NC Unitary ESPRIT which are discussed in Section 11.5. As an

interesting observation we have seen that R-D NC Standard ESPRIT is not needed

since the preprocessing creates a virtual array steering matrix which is always centro-

symmetric so that R-D NC Unitary ESPRIT is applicable even if the original array is
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not centro-symmetric. We have also shown that R-D NC Standard ESPRIT and R-D

NC Unitary ESPRIT have the same asymptotical peformance (cf. (11.31)).

• The R-D Tensor-ESPRIT-type algorithms for strict-sense non-circular sources which are

discussed in Section 11.6. The main idea was finding a tensor-compliant way of exploiting

strict-sense non-circularity which was found by a sequence of r-mode augmentations of

the measurement tensor.

• The first-order analytical performance assessment of the HOSVD, based on first-order

perturbation results of the SVD.

• The application of these results to find an explicit first-order perturbation expansion for

R-D ESPRIT-type algorithms based on Least Squares, in particular R-D Standard ES-

PRIT, R-D Unitary ESPRIT, R-D Standard-Tensor-ESPRIT, and R-D Unitary Tensor-

ESPRIT. The strength of the explicit expansion is that it does not require any assump-

tions about the statistics of the perturbation (i.e., the additive noise).

• The extension of this result to ESPRIT based on Structured Least Squares (SLS), for

simplicity only considering 1-D SLS and a single SLS iteration.

• The derivation of closed-form MSE expressions for all previously mentioned algorithms

for the case of circularly symmetric white noise. Note that Gaussianity is not needed

here.

• The simplification of the MSE expression in terms of parameters with a physical sig-

nificance such as the number of antenna elements, or the SNR, for the special case of

a single source. This led to the conclusion that all ESPRIT-type algorithms based on

LS perform identical1 and that their asymptotical efficiency decreases with an increas-

ing number of sensor elements. Moreover, SLS-based ESPRIT was shown to have an

asymptotic efficiency significantly better than LS-based ESPRIT, in fact, very close to

one.

13.2. Future work

The HOSVD-based subspace estimate is a convenient and algebraically simple way to ben-

efit from the multidimensional structure in R-D parameter estimation problems. While its

1We have not drawn this conclusion for NC ESPRIT-type algorithms here since no performance analysis is
available yet. However, numerical results suggest that this is indeed the case for NC ESPRIT-type algorithms
as well.

181



13. Summary of subspace-based parameter estimation

combination with ESPRIT-type algorithms was successfully demonstrated, it opens up many

options for future research.

Firstly, its combination with different subspace-based algorithms is still to be investigated.

For instance, the R-D RARE or the R-D MODE algorithm are expected to benefit from

the enhanced subspace as well. In fact, as for ESPRIT, a tensor-valued formulation of the

algorithms could be beneficial in order to find further algorithm-specific improvements using

tensors in addition to the enhanced subspace estimate (like the TS-SLS algorithm [RH07b] for

Tensor-ESPRIT-type algorithms).

Secondly, the explicit link to the matrix-based subspace estimate via the structured projec-

tion shown in Theorem 11.4.2 opens up exciting new possibilities. It shows that the HOSVD-

based subspace estimate can be computed based on the subspaces of all the unfoldings of

the tensor. Consequently, matrix-based subspace tracking schemes can be applied to all un-

foldings in order to adaptively track the HOSVD-based subspaces in time-varying scenarios.

Initial results on this idea suggest that this is a promising research direction.

Concerning the exploitation of the non-circularity of the source signals, further extensions

are possible as well. For instance, it would be interesting to exploit the coexistence of circular

and non-circular sources. Also, it would be desirable to find a procedure by which the less

restrictive weak-sense non-circularity can be used in a beneficial way.

In terms of the analytical performance assessment, the open aspects can be categorized into

four directions. Firstly, some of the proposed methods have not yet been described analytically.

For R-D NC Unitary ESPRIT and R-D NC Unitary Tensor-ESPRIT this is expected to be

straightforward (cf. Section 12.4.5). Also, incorporating spatial smoothing and the tensor-

based spatial smoothing (TBSS) technique from [THRG10, THG09b, THG09a] seems to be

an easy task. They could lead to a better understanding of the impact of the design parameters

(i.e., the number of subarrays in the separate dimensions) in spatial smoothing and prove that

the methods of [THRG10, THG09a] are insensitive to this parameter. For the TS-SLS-based

Tensor-ESPRIT-type algorithms it is not as simple since one iteration may not be sufficient

due to the many cross terms that are occur in the TS-SLS cost function [RH07b]. This

complicates the derivation of a first-order perturbation expansion since an iterative expansion

of the pseudo-inverse involved in the update steps of TS-SLS becomes necessary.

Secondly, the analysis of the single source case has revealed some interesting aspects. How-

ever, there is no gain from using tensors in parameter estimation accuracy (although the signal

subspace estimate has been improved). This gain is present as soon as more than one source is

estimated. Therefore, extending this study to the case of two sources and computing the esti-

mation error as an explicit function of the source correlation or the source separation promises
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to be even more insightful when the tensor gain is particularly pronounced. However, it is

expected that the necessary calculations for this become quite tedious as many of the sim-

plifications for the single source case cannot be applied anymore. Even if simplified MSE

expressions cannot be found we could analyze the performance based on the MSE expressions

we have. Performing such an analysis under various conditions in a systematic manner may

reveal some general conclusions in which cases the tensor gain is large or small.

A third direction is to investigate other types of R-D subspace-based parameter estimation

schemes such as R-D MUSIC, R-D MODE or R-D RARE and investigate the tensor gain and

the asymptotic efficiency for these cases. Note that this extension uses the HOSVD-based

subspace estimate and hence differs from existing tensor-based R-D estimation schemes (such

as [MLM05] which operators on eigentensors of the covariance tensor of the vector-sensor array

observations, as explained in Section 9.1).

Finally, a fourth direction is to extend the first-order perturbation analysis which is only valid

for high effective SNRs to a second-order expansion, which then also captures the threshold

effect for lower SNRs. The second-order expansion of the SVD is already available [Xu02] and

could serve as a starting point. Note that this is also of particular interest with respect to the

tensor gain since from numerical simulations it seems that even for cases where there is no

tensor gain for high SNRs (e.g., a single source), there can still be a gain for low SNRs.
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Two-Way Relaying
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The following chapters of this thesis are devoted to applications of advanced algebraic con-

cepts in the area of two-way relaying. We begin in Chapter 14 by motivating why relaying is

an increasingly important aspect of wireless communication systems and why efficient use of

relays may play a key role to cope with the challenges we face in the design of next-generation

mobile networks. We also elaborate on various relaying protocols and relay operation modes to

motivate why we study one particular relaying scheme, namely, two-way relaying with (digital)

amplify and forward (AF) relays.

We then discuss two crucial aspects of two-way relaying systems with MIMO AF relays. The

first aspect discussed in Chapter 15 is the acquisition of channel state information which is

crucial in order to cancel the self-interference at the terminals which is caused by the two-way

relaying protocol. Since no suitable channel estimation scheme has existed, we propose a novel

tensor-based algebraic channel estimation (TENCE) procedure which takes advantage of the

specific structure of the channel matrices in this system. To enhance the estimation accuracy

further, a Structured Least Squares based iterative refinement for TENCE is introduced.

The effectiveness of the channel estimation procedures is demonstrated in numerical simu-

lations.

The subsequent Chapter 16 is devoted to the design of the relay amplification matrix. As we

discuss, existing approaches either involve very complicated numerical optimization procedures

or they are based on ad-hoc choices which are not motivated by an appropriate system design

goal and hence demonstrate an unsatisfactory system performance. Therefore, we introduce

the algebraic norm maximizing (ANOMAX) transmit strategy which achieves a very good bit

error rate performance while being very simple to compute via a dominant eigenvector. We

also introduce an algebraic modification of ANOMAX for rate maximization which adapts the

singular value profile of the ANOMAX solution as a function of the SNR in order to achieve

the full spatial multiplexing gain for high SNRs. Finally, we introduce the semi-algebraic

rate maximization via generalized eigenvectors for single-antenna terminals (RAGES) which

provides the optimal sum-rate in a two-way relaying system for the special case that the

terminals have a single antenna.

A summary of our achievements and an outlook to possible future work is finally provided in

Chapter 17. Finally, some proofs and derivations have been moved to Appendix E to enhance

the readability.



14. Introduction to two-way relaying

14. Introduction to two-way relaying

14.1. Motivation and state of the art

Communication among individuals is without much doubt of the most fundamental endeavors

of mankind. Throughout history our society has constantly looked for ways to improve our

abilities to exchange messages over longer distances. In many ways, these achievements had

major impacts on society itself. Nowadays it is considered most natural to have conversations

with individuals on different continents, several thousand miles away. This ability allows us to

share knowledge, beliefs, and emotions on a global scale which would have been inconceivable

a few decades ago.

It is this ever-increasing deep desire for faster, more reliable, and completely ubiquitous

access to communication that has created more and more sophisticated global communication

networks. In the past decades society has witnessed the creation of the first analog wireless

transmission systems with the first handheld devices available in the 70’s and 80’s, the transi-

tion to digital wireless telephony in the 90’s, and new improved generations (3G and 4G) in the

last decade. With every new standard created we have found increased data rates, enhanced

coverage, new services, and more sophisticated devices. These improvements were achieved by

exploiting novel technologies to push use of the available scarce resources (spectrum, power)

closer to the known limits.

With enhanced digital modulation schemes as well as flexible spectrum access and reuse

methods we have reached a point where the data rate per link is already very close to the ul-

timate limit predicted by Shannon’s channel coding theorem [Sha48]. A further improvement

in data rate was achieved with using multiple antennas at both link ends. Multiple Input

Multiple Output (MIMO) technologies enable us to serve multiple users on the same band-

width simultaneously via Space-Division Multiple Access (SDMA). Many efficient Multi-User

MIMO transmit strategies have been proposed, e.g., the Block Diagonalization (BD) algorithm

[SSH04] or its regularized version RBD [SH08]. These are often close to the optimal strategies

given by non-linear precoding schemes [Cos83, CS03]. Note that MIMO technologies are al-

ready a part of the 4G standards [WIN08] that are now in the process of being implemented.

As with the capacity of a single link, the capacity of MIMO links [Tel99] is already closely

within reach.

We are standing at a point where we have to ask ourselves what the next fundamental
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aspect will be to improve communication systems further. A key indicator for the answer to

this question is that while the achievable spectral efficiency of a single source-destination link

(Point to point (P2P)) has almost been reached, in terms of other measures there is still a

far way to go. If we consider the normalized data rate per area (say, Bits per second per

Hertz per square kilometer) or the energy efficiency (say, Bits per second per Hertz per Joule),

the limits are either unknown or far from being reached [DHL+11]. Therefore, in addition to

making our communication systems more energy efficient, one of the prime challenges will be

to improve coverage in an information theoretical sense. That means it will not be enough

(albeit required) to make cells ever so small and increase network node density further and

further. Additionally, we need to use the available area more efficiently. This leads to an

inevitable and very essential change in how we treat interference.

Ever since the first cellular systems were established, interference was regarded as a purely

negative aspect which needs to be avoided by orthogonal access schemes. This means that

neighboring cells would use different frequency bands to avoid interfering each other and

multiple users would be assigned to different frequency bins (Frequency Division Multiple

Access (FDMA)), time slots (Time Division Multiple Access (TDMA)), and/or they would

be spatially separated (SDMA). This leads to a hierarchical decomposition of the network

(network → cell → link) into the basic building block P2P link between a transmitter and a

receiver. While this approach simplifies the design significantly, we have now reached a point

where it may simply not be sufficient any more to serve the growing traffic demands with the

available limited resources.

Instead of regarding interference as a purely negative aspect we have started to understand

that there are cases where it can be used much more flexibly, sometimes even in a constructive

manner. A prominent example for such a technology is inter-cell interference coordination,

i.e., managing interference across multiple cells by allowing limited cooperation between base

stations of adjacent cells. Such coordination mechanisms are partly already included in present

standards, e.g., [3GP06, WIN08].

Research continues towards Coordinated Multipoint (CoMP) [PDF+08, SRH10b] and net-

work MIMO [VLV07] which try to use several base stations jointly for downlink beamforming

across multiple cells. Moreover, interference cancellation and interference alignment techniques

are currently being discussed. More details on current and prospective interference coordina-

tion techniques are provided in [ACH07] and [BPG+09].

Understanding interference in a much broader context is the key to building a more efficient

generation of wireless networks. This implies that we need to move away from using P2P links

as the essential building blocks to more sophisticated structures such as the interference chan-
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(a)

(b)

(c)

(d)

Figure 14.1.: Elementary building blocks of next-generation wireless systems: (a) relay-
enhanced channel; (b) interference channel; (c) two-way relaying channel; (d) ad-hoc com-
munication system

nel, the relay-enhanced channel, the two-way relaying channel, or the ad-hoc communication

scheme [DHL+11], as exemplified in Figure 14.1. These building blocks themselves have been

known for a long time, see for instance the seminal papers by Shannon [Sha61] on two-way

communication channels or the well cited papers on the interference channel [HK81] and the

relay channel [vdM71, CE79]. Yet, some of their properties are still not fully understood and

more research is needed until we can construct larger networks from these building blocks

without wasting any of their potential.

In this thesis we contribute to this mission by investigating one particular aspect of such

building blocks further, namely relay-assisted communications in a two-way relaying fashion.

In general, the deployment of relays is a very attractive approach for improving wireless net-

works in the near-future, see for instance [PWS+04] for a comprehensive survey of various

relaying techniques and their impact on wireless communication systems. In fact, even current

candidates for 4G standards like WiMAX or LTE-Advanced already include initial support for

relays [YHXM09, 3GP10]. The main advantage of this approach is the great flexibility we gain.

Small simple low-cost relay devices can likely be deployed in larger quantities, contributing

to the goal of an increase in network node density. The more network nodes we can control,

the more flexibility we gain in how to use them. A significant part of the existing literature

on relaying is dedicated to one-way relaying. Here one-way means that the transmission is

directed in one direction, i.e., from a specific source node via one or several relays to a specific

destination node. For instance, one-way relaying can be used for coverage extension, acting as

a wirelessly connected base station for users far away from the cell center. Alternatively, relays

can be employed in a cooperative manner improving data rate or diversity [PWS+04]. The

one-way relaying channel is comparably well understood. Performance limits, achievable rates,
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and efficient signaling schemes in the single hop case are, for example, examined in [NBK04], a

treatment of the multi-hop case is found in [BFY04]. However, the main drawback of one-way

relaying is that for a bidirectional exchange of information, at least four time slots are needed

if the relay operates in half duplex mode. This incurs a fundamental loss in spectral efficiency.

To overcome this drawback, we focus on two-way relaying [RW05] where two communication

partners exchange data bidirectionally with the assistance of one relay node. Each of these

communication partners could be a mobile user as well as a fixed base station. Therefore, two-

way relaying can be applied to user/network connections (as in a “classical” downlink/uplink)

as well as to user/user connections (as in ad-hoc networks). In the latter case, traffic exchange

can be handled by a relay station without the interaction of a base station, which allows to

distribute the traffic load more evenly. Moreover, as we discuss in the following sections, via

two-way relaying we can achieve a bidirectional exchange of information in only two time

slots while all nodes operate in half-duplex mode. Consequently, two-way relaying allows a

very efficient use of the scarce available radio resources without posing large demands on the

hardware complexity of the relay nodes. For this reason we consider two-way relaying as a

strong candidate for a relaying protocol that can be implemented in the near future.

The two-way relaying protocol was popularized by [RW05, RW07] as a means for com-

pensating the spectral efficiency loss in one-way relaying due to the half duplex constraint

of the relay. Two-Way Relaying can be combined with both operation modes discussed in

Section 14.2, i.e., AF and DF. We focus on the (digital) AF scheme due to the advantages

mentioned at the end of Section 14.2. For a thorough treatment of two-way relaying with DF

relays, the reader is referred to [OSBB08], [OB07], [LJS06], [SAKH11], or [YCP11]. Note that

besides AF and DF other types of two-way relaying schemes exist, e.g., Space-Time Coding

is discussed in [CGHN09], XOR and superposition coding are investigated in [HKE+07], and

Compute-and-Forward based two-way relaying is shown in [KKE11].

In order to combine two-way relaying with AF relays, we need channel state information

at both terminals. Therefore, we discuss algebraic channel estimation schemes for two-way

relaying with MIMO AF relays in Chapter 15. These provide both terminals with all relevant

channel parameters. Moreover, the channel can also be estimated at the relay station.

As we discuss in Chapter 16, if the relay station possesses channel state information, the

amplification matrix can be adjusted in order to improve the transmissions between the two

nodes. Existing literature on the design of the relay amplification matrix suffers from major

drawbacks: The proposed algorithms are either designed based on complicated convex opti-

mization procedures [ZLCC09] with a high computational complexity or in an ad-hoc manner

without a particular cost function in mind [UK08, VH11]. This is the main motivation for
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proposing simple algebraic approaches that outperform existing ad-hoc proposals with respect

to the bit error rate or the sum rate (cf. Section 16.5) while being significantly less complex

than convex optimization based algorithms.

The following chapters are devoted to our contributions in the field of two-way relaying. The

required prerequisites are provided in this chapter with a discussion on various relay operation

modes in Section 14.2 and the notation and the data model in Section 14.3. Chapter 15 is

focused on channel estimation in two-way relaying. The design of the relay amplification matrix

is discussed in Chapter 16. Finally, Chapter 17 provides a summary of our contributions and

an outlook to possible future work.

14.2. Relay operation modes

In general, a relay node can be viewed as a device which receives a signal of interest, applies

some form of processing to it, and then retransmits the processed version of this signal to

one or multiple destinations. Therefore, relays can be classified according to nature of the

processing they apply.

A first group of relays are so-called Decode and Forward (DF) relays. Their task is to decode

the received signal until the actual transmitted information sequence is retrieved, applying

similar processing as the destination of the transmission. In a second step, the information

is re-encoded, either using the same Modulation and Coding Scheme (MCS) or possibly even

modifying it to adapt to the conditions of the next transmission link. The advantage of

DF relays is that if no decoding errors occur, a “clean” (noise-free) version of the signal is

retransmitted. Moreover, the design of receivers and transmitters for DF relays follows more

closely the design of existing wireless network nodes since they behave much like receivers

and transmitters in P2P links. However, the disadvantage is that DF relays require the full

base-band processing chain, including decoders for the MCSs that are applied in the network.

Since the retransmission cannot be initiated before the entire information sequence has been

decoded, this may cause significant additional latency, for instance, if Turbo codes [BGT93]

are used that require long interleavers. In conjunction with two-way relaying, DF relays have

another disadvantage. If two users transmit to the relay at the same time and the relay

has to decode their messages, the achievable rate region is limited by the multiple access

(MAC) channel. Likewise, if the relay transmits to both users in the second phase, there is a

limitation of the broadcast (BC) channel (characterized by the coupling due to the common

input, cf. [OSBB08]).

This is the main motivation for a second group of relays with a lower complexity, namely, the
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so-called Amplify and Forward (AF) relays. Their task is to retransmit an amplified version of

the received signal without decoding it. This means that the receive noise is also amplified and

retransmitted, which is the main drawback of AF relays. Yet, their advantage is that they do

not need to decode the information which means that they cause less latency and that they do

not need to know the MCSs applied between source and destination to encode the information1

Moreover, the MAC or BC limitation does not apply, as we discuss in Section 14.32.

However, close inspection reveals that the group of AF relays must indeed be divided into two

subgroups. It is often stated that the main advantage of AF relays is that they require no base-

band processing since the amplification can be performed directly in the Radio Frequency (RF)

band. However, this “pure” form of AF, which we will call “analog AF”, implies that the signal

cannot be stored and hence the relay must operate in full-duplex mode. This poses a severe

problem since the device receives a signal several orders of magnitude weaker than the signal it

transmits itself. There are two different forms of such devices (also called “repeaters” [3GP11]):

in-band and cross-band (out-of-band) relays [GR11]. Cross-band repeaters receive the signal in

one frequency band then shift it to another frequency and retransmit it there. The advantage

is that duplex interference can be avoided by using duplex filters which block the transmitted

signal from entering the receiver chain by placing it into their stop band. If the two bands

are sufficiently far from each other, a filter with a sufficiently large stop band attenuation can

easily be designed. However, this implies that less than half of the available system bandwidth

can be used for the transmission from source to destination. Moreover, due to the frequency

translation it seems difficult to apply phase modulation since phase information is lost if the

frequency is altered. On the other hand, in-band repeaters retransmit on the same frequency.

This is problematic since their own transmitted signal can reenter their receive chain and it is

typically several orders of magnitudes stronger. Consequently, if this self-interference cannot

be prevented (e.g., by physically separating transmit and receive side), very sophisticated

loop-interference cancellation techniques are required [RWW09]. Note that this requires an

extremely large dynamic range of the receivers due to the large power differences.

This shows that the complexity argument for analog AF relays has to be treated with care.

Saving the cost of a base-band processing chain comes at the price of increased complexity

due to the full-duplex operation mode. There is a second sub-class of AF relays, which we call

“digital AF”. These devices are equipped with a base-band processing chain, i.e., the received

1This is also advantageous if multiple operators share one relay in the context of voluntary spectrum and
infrastructure sharing, see Section 17.1.

2Note that this does not mean that the rate region for AF relays is larger than for DF relays since AF relays
waste a part of their transmit power for amplifying the noise and for transmitting the self-interference which
is later cancelled at the terminals.
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Figure 14.2.: Two-way relaying system model: Two terminals equipped with M1 and M2 an-
tennas communicate with a relay station that has MR antennas. There are two transmission
phases: First both terminals transmit to the relay then the relay sends the amplified signal
back to both terminals.

signal is first converted to the base-band. However, it is then amplified in the “digital” domain

without decoding it, e.g., by applying a linear transformation to the received signal vector. The

amplified signal is then transformed back into the RF band and retransmitted in a second time

slot in a Time Division Duplexing (TDD) fashion. The obvious advantage of digital AF over

analog AF is that digital AF relays can operate in half-duplex mode. Consequently, digital AF

relays represent a good trade-off, combining the advantages of analog AF and DF relays: We

neither need to decode the transmitted information, nor do we require sophisticated full-duplex

hardware. Moreover, combined with two-way relaying we achieve a bidirectional exchange of

information using only two time slots. Another advantage is an inherent near-far robustness

since both signals travel through both channels and are hence affected by the stronger and by

the weaker path loss [RH09c].

Note that besides AF and DF, other relay operation modes exist. For instance, XOR and

superposition coding in the context of two-way relaying are discussed in [HKE+07]. Moreover,

estimate-and-forward (EF) as well as compress-and-forward (CF) in the context of one-way

relaying are found in [LY06a].

14.3. Notation and data model

As we have motivated in the previous sections we consider two-way relaying with a digital

AF relay for the bidirectional exchange of information between two nodes UT1 and UT2.

The corresponding system model is shown in Figure 14.2. We consider the general MIMO

case where the nodes are equipped with M1 and M2 antennas, and the relay possesses MR

antennas, respectively.

We assume quasi-static block fading channels, i.e., the channel does not change significantly
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within the coherence time, which is long enough to acquire CSI at an adequate quality. We

also consider frequency-flat fading, since a frequency-selective channel can be converted into

a set of parallel frequency-flat fading channels by employing Orthogonal Frequency Division

Multiplexing (OFDM) and chunk-wise processing. Consequently, the received signal at the

relay during the first time slot can be expressed as

r =H
(f)
1 ⋅x1 +H(f)2 ⋅x2 +nR ∈ C

MR×1, (14.1)

whereH
(f)
1 ∈ C

MR×M1 andH
(f)
2 ∈ C

MR×M2 denote the forward MIMO channel matrices between

the terminals and the relay, x1 ∈ C
M1×1 and x2 ∈ C

M2×1 are the transmitted signals by the

terminals, and nR represents the additive noise component at the relay which is assumed to

be independent of the transmitted signals. The covariance matrices of the transmit signals3

xi and the noise component at the relay nR are given by Ri = E{xi ⋅xH
i } ∈ CMi×Mi and

RN,R = E{nR ⋅nH
R} ∈ CMR×MR , respectively. The transmit power of UTi is then defined as

PT,i = trace{Ri}.
The relay amplifies the received signal by applying linear processing to the received vector

r. This can be expressed in terms of a relay amplification matrix G ∈ CMR×MR in the following

manner

r̄ = γ ⋅G ⋅ r =Gγ ⋅ r, (14.2)

where γ ∈ R is a scalar relay amplification factor which scales the transmitted signal to an

appropriate power level and Gγ
.
= γ ⋅G. Typically we assume that there is an average power

constraint at the relay, i.e.,

PT,R
.
= E{∥r̄∥22} ≤ Pmax

T,R , (14.3)

where the expectation is with respect to the random source symbols and the noise realizations.

The processed signal r̄ is then transmitted by the relay and received by the nodes in the

subsequent second time slot. The corresponding received signals can be expressed as

y1 =H
(b)
1 ⋅ r̄ +n1 ∈ C

M1×1 (14.4)

y2 =H
(b)
2 ⋅ r̄ +n2 ∈ C

M2×1, (14.5)

3Note that we assume the transmit signals to be zero mean, which is very reasonable in practice since a mean
different from zero implies a waste of power on a DC component (which carries no information). If xi has a
mean different from zero, Ri should be defined as the correlation matrix Ri = E{xi ⋅xH

i }, not as the covariance
matrix E{(xi − E{xi}) ⋅ (xi − E{xi})H}.
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14. Introduction to two-way relaying

where H
(b)
1 ∈ C

M1×MR and H
(b)
2 ∈ C

M2×MR are the corresponding backward MIMO channels

from the relay to the nodes and n1 ∈ C
M1×1, n2 ∈ C

M2×1 represent the terminals’ own noise

contributions which are assumed to be independent of the noise at the relay station and the

transmitted signals. Inserting (14.1) and (14.2) into (14.4) and (14.5) we obtain

y1 =H
(e)
1,1 ⋅x1 +H(e)1,2 ⋅x2 + ñ1 ∈ C

M1×1 (14.6)

y2 =H
(e)
2,2 ⋅x2 +H(e)2,1 ⋅x1 + ñ2 ∈ C

M2×1, (14.7)

where H
(e)
i,j

.
= γ ⋅H(b)i ⋅ G ⋅H(f)j ∈ C

Mi×Mj represents the “effective” channel (also called

“compound” channel) between terminal j (transmitting) and terminal i (receiving). Moreover,

the vector ñi = H
(b)
i ⋅ γ ⋅G ⋅ nR + ni symbolizes the effective noise contribution at terminal

i = 1,2 which consists of the terminal’s own noise as well as the forwarded relay noise.

The first term in the nodes’ received signals in (14.6) and (14.7) represents their own trans-

mitted signals conveyed through the effective channels H
(e)
1,1 and H

(e)
2,2 , respectively. Conse-

quently, these quantities are referred to as self-interference since they are created by each

nodes’ own transmitted signal xi. An important aspect to note is that since UTi knows its

own transmitted signal xi, the self-interference can simply be subtracted from the received

signal, provided that the effective channel matrix H
(e)
i,i is known. This step is also referred to

as Analog Network Coding (ANC) [KGK07].

If the terminals possess perfect channel knowledge, the self-interference can be perfectly

canceled. We then have

z1 = y1 −H(e)1,1 ⋅x1 =H
(e)
1,2 ⋅x2 + ñ1 (14.8)

z2 = y2 −H(e)2,2 ⋅x2 =H
(e)
2,1 ⋅x1 + ñ2. (14.9)

This shows that ANC basically decomposes the two-way relaying system into two parallel

single-user MIMO systems. The difference to a “regular” P2P MIMO system is that the

additive noise cannot be considered white since ñi contains the forwarded relay noise. More

specifically, the noise covariance matrix is given by

E{ñi ⋅ ñH
i } = γ2 ⋅H(b)i ⋅G ⋅RN,R ⋅GH ⋅H(b)Hi +RN,i, (14.10)

whereRN,i = E{ni ⋅nH
i } represent the nodes’ noise covariance matrices for i = 1,2, respectively.

Another important aspect to note is that even though (14.8) and (14.9) suggest that the two

P2P MIMO links are fully independent that is not true. There is a coupling between them

since both H
(e)
1,2 and H

(e)
2,1 contain the relay amplification matrix γ ⋅G which depends on both
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transmit signals at least weakly via the power constraint (14.3): If one terminal uses more

power, the relay has to lower its relay amplification factor γ which lowers the norm of both

effective channels H
(e)
1,2 and H

(e)
2,1 .

Still, both terminals can apply single-user MIMO transmission techniques over the effec-

tive channels, e.g., Spatial Multiplexing (SMUX) with Water-Filling or Dominant Eigenmode

Transmission (DET) which are known to be the sum-rate maximizing and the Signal to Noise

Ratio (SNR)-maximizing strategies in P2P MIMO systems [PNG03].

Note that in general, the forward and backward channels are not assumed to be reciprocal.

However, since we operate in TDD mode, the reciprocity assumption may actually be fulfilled.

In this special case we can simplify our notation to H
(f)
i =H i =H

(b)T
i for i = 1,2 and hence

H
(e)
i,j = γ ⋅HT

i ⋅G ⋅Hj . (14.11)

We assume reciprocity for the derivation of the TENCE algorithm and its SLS-based iterative

refinement in Chapter 15. For the design of the relay amplification matrix in Chapter 16,

reciprocity is not assumed, unless stated otherwise.
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15. Channel estimation

In this section we discuss channel estimation for two-way relaying with a MIMO AF relay.

We assume reciprocity, i.e., H
(f)
i =H i =H

(b)T
i for i = 1,2 and hence H

(e)
i,j = γ ⋅HT

i ⋅G ⋅Hj ,

cf. (14.11). We first introduce a simple closed-form Least Squares (LS)-based compound chan-

nel estimator [RH10c] in Section 15.2, which only estimates the compound channels H
(e)
i,j

at UTi. Then we show the algebraic Tensor-Based Channel Estimation (TENCE) scheme

[RH10c, RH09e] in Section 15.3, which estimates the channels H1 and H2 at both terminals

directly, taking advantage of the special structure of H
(e)
i,j . Since TENCE is not MMSE-

optimal, we provide a simple iterative refinement based on Structured Least Squares (SLS)

[RH10c, RH09d] in Section 15.4. Note that SLS has been discussed in conjunction with ES-

PRIT in Chapter 11 of this thesis. The algorithms are discussed and compared based on

simulations in Sections 15.5 and 15.6, respectively.

15.1. Problem statement and state of the art

As shown in (14.8) and (14.9), applying ANC in a two-way relaying system with an AF relay

decouples the bidirectional transmission into two parallel P2P MIMO links. Therefore, in

order to enable the terminals to transmit information, each terminal should know the following

quantities:

• Its own “self-interference” channel, i.e.,H
(e)
1,1 for UT1 andH

(e)
2,2 for UT2. This information

is critical since it is the basis for the ANC step. Note that if the relay cancels the self-

interference (as, for instance, in the ZF transceiver proposed in [UK08]), these channels

are not needed (in fact, they are equal to zero).

• Its own effective receive channel, i.e., H
(e)
1,2 for UT1 and H

(e)
2,1 for UT2. This channel is

needed to decode the transmission from the other terminal.

• There might also be some benefit in knowning its own “forward” channel, i.e., H
(e)
2,1 for

UT1 and H
(e)
1,2 for UT2. These are the channels into which the terminals transmit their

own signals. Therefore, if the channels are known, the terminals can apply transmit

precoding to match their signals to the channels. In the special case where the relay

chooses a relay amplification matrix which is symmetric, i.e., G = GT, we have H
(e)
1,2 =

H
(e)T
2,1 and, therefore, the terminals can obtain transmit CSI from their receive CSI.
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Most previous publications on two-way AF relaying have assumed that channel knowledge

is available at the terminals. For one-way AF-based relaying, a large number of results on

channel estimation is available. Prominent examples include [AGU10, LZZL09, KYKI10] for

one single-antenna AF relay, [GCN08] for a network of single-antenna AF relays, [KH11, LV08,

MOZL09, RKX12] for one MIMO AF relay, or [WdLM11] for a multi-hop network of AF relay

nodes. Maximum likelihood channel estimation schemes for two-way relaying with AF relays

are proposed in [GZL09b] for the flat fading case and in [GZL09a] for frequency-selective fading,

however these techniques are limited to the single-antenna case and a MIMO extension is not

straightforward. Further approaches that are limited to the single-antenna case are [JGGN10]

(which considers power allocation), [AP10] (which studies semi-blind channel estimation using

constant modulus modulation), [YCHY10] (which is based on OFDM), [WGZT10] (which

considers joint channel and carrier frequency offset estimation), or [CGR+12] (which applies

compressed sensing concepts). Channel estimation in two-way relaying systems with multiple

antennas is limited to relays employing DF [ZKWB08] or space-time coding [TSQ09]. The

authors of [PLNG10] consider channel estimation in MIMO two-way relaying systems with

frequency-selective fading based on OFDM and relays using a scalar real-valued amplification

α per antenna only. Note that [PLNG10] cannot be compared to the channel estimation

schemes proposed in this chapter since (a) we consider another form of AF where the relay

may multiply the received signal vector with one complex relay amplification matrix and (b) in

[PLNG10] the frequency-selective channels and the resulting circulant structure of the channels

in the time domain due to the cyclic prefix is explicitly exploited whereas our focus is on flat

fading only. We introduce two different approaches to the channel estimation problem. First,

we discuss the compound LS-based channel estimator which provides UT1 with estimates for

H
(e)
1,1 and H

(e)
1,2 and UT2 with estimates for H

(e)
2,2 and H

(e)
2,1 , i.e., the terminals do not have

transmit CSI unless G =GT.

Then, we introduce the TENCE scheme and its SLS-based iterative refinement, which pro-

vide both terminals with knowledge of H1 and H2. Based on these channels, all compound

channels can be constructed, provided that the terminals know the relay’s transmit strategy.

Note that there may be an additional benefit in knowing the channels H1 and H2. In fact, it

is often proposed to choose the terminals’ transmit strategies based on H1 and H2 instead of

H
(e)
1,2 and H

(e)
2,1 , cf. [XH10, LCSK10, JS10b, WT12]. In light of this, it is an attractive feature

of the proposed TENCE scheme that transmit CSI (H i), receive CSI (H
(e)
i,j ), and the required

self-interference channel (H
(e)
i,i ) are obtained at UTi, i = 1,2 at the same time without the need

for explicit feedback.
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15.2. Compound channel estimator

In this section we show a LS-based scheme for estimating the compound channel matricesH
(e)
i,j

at UTi for i, j = 1,2. While this scheme is simple and robust, it is not necessarily optimal,

since it ignores the special structure of the compound channel matrices. It also fails to provide

UTi with an estimate ofH
(e)
j,i which it needs to compute a proper precoding matrix. Note that

H
(e)
j,i =H

(e)T
i,j only if G =GT. We have shown in [RH09c] that ANOMAX (cf. Section 16.3.1)

with unequal weighting should be chosen in near-far scenarios or if the UTs have different

target SINRs. In this case, G ≠GT.

In order to estimate the channels, both terminals transmit a sequence of NP pilot symbols

x1,j , x2,j for j = 1,2, . . . ,NP. The overall training data received by the relay can be expressed

as

Y R =H1 ⋅X1 +H2 ⋅X2 +NR ∈ C
MR×NP , (15.1)

where the pilot symbol matrices X1 and X2 are defined as

Xi = [xi,1,xi,2, . . . ,xi,NP
] ∈ CMi×NP . (15.2)

Let X = [XT
1 , X

T
2 ]T ∈ C(M1+M2)×NP . Then, a least-squares estimate of the channel matrices

H1 and H2 at the relay station is obtained via

[Ĥ1, Ĥ2] = Y R ⋅X+. (15.3)

Note that (15.3) requires NP ≥M1 +M2. Based on these estimates, the relay can compute a

suitable relay amplification matrix G, e.g., via the Algebraic Norm-Maximizing (ANOMAX)

transmit strategy [RH09a]. The received training data R is then multiplied with G and

transmitted back to the terminals. The signal received at UTi, i = 1,2 can be expressed as

Y i =H
(e)
i,i ⋅Xi +H(e)i,j ⋅Xj + Ñ i (15.4)

Consequently, the LS estimates of the effective channels are given by

[Ĥ(e)1,1 , Ĥ
(e)
1,2] = Y 1 ⋅X+ for UT1 and [Ĥ(e)2,1 , Ĥ

(e)
2,2] = Y 2 ⋅X+ for UT2, (15.5)

where we again require that NP ≥ M1 +M2. Consequently, with M1 +M2 pilots we have

estimated the channel matrices H1 and H2 at the relay, the effective channel matrices H
(e)
1,1
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Relay

UT1

UT2

G(1) G(2) G(NR)
x1,1x1,1x1,1 x1,NP

x1,NP
x1,NP

x2,1x2,1x2,1 x2,NP
x2,NP

x2,NP t

Figure 15.1.: Visualization of the pilot sequences in the training phase for TENCE: NP pilots
are transmitted from both terminals in NR consecutive frames. In each frame, the relay
forwards the pilots using a different amplification matrix G(i), i = 1,2, . . . ,NR.

and H
(e)
1,2 at UT1, and the effective channel matrices H

(e)
2,1 and H

(e)
2,2 at UT2. However, to

compute proper precoding matrices, UT1 requires an estimate of H
(e)
2,1 and UT2 needs an

estimate of H
(e)
1,2 . In the case where the relay chooses its amplification matrix G such that

G = GT, UT1 can obtain an estimate of H
(e)
2,1 via Ĥ

(e)
2,1 = Ĥ

(e)T
1,2 . Otherwise, additional pilots

are needed to estimateH
(e)
2,1 at UT1 andH

(e)
1,2 at UT2. Alternatively, open loop techniques such

as Orthogonal Space-Time Block Codes [TSC88] can be used to convey the desired information

without transmit channel state information. Another drawback of the simple LS-based channel

estimation procedure is that the structure of the compound channels is completely ignored.

We show in the next section how the estimation accuracy can be improved by exploiting this

special structure and estimating the channel matrices H1 and H2 directly.

15.3. Tensor-based Channel Estimation (TENCE)

The LS-based scheme for the estimation of the effective (compound) channel ignores their

structure completely. For instance, H
(e)
i,i = H

T
i ⋅G ⋅H i, i.e., the M2

i elements of H
(e)
i,i are

second-order polynomials in the Mi ⋅MR coefficients in H i. Consequently, if MR < Mi it

may be more efficient to estimate H i by solving a quadratic LS problem and exploiting the

special structure of H
(e)
i,i . This is the motivation behind the tensor-based channel estimation

(TENCE) scheme presented in this section. TENCE itself is an algebraic (i.e., non-iterative)

solution to the non-linear least squares problem, which is very simple to compute. If a more

accurate solution is required, TENCE can be refined by a few iterations of an iterative channel

estimation scheme described in Section 15.4.

15.3.1. Training

In order to acquire channel knowledge ofH1 andH2 at the user terminals we require a special

training phase in which known pilot symbols are transmitted for known relay amplification
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matrices. We therefore divide the training phase into NR frames. For each frame, we choose a

different relay amplification matrix G(i) ∈ CMR×MR , i = 1,2, . . . ,NR. For every G(i), the same

pilot sequences x1,j ∈ C
M1 and x2,j ∈ C

M2 for j = 1,2, . . . ,NP are transmitted from UT1 and

UT2, respectively. The number of pilot symbols NP that are transmitted for each G(i) and the

number of frames NR will be specified later. Note that the total number of training time slots

is given by NR ⋅NP. We depict this process in Figure 15.1 where we show the pilot vectors

transmitted by the terminals as well as the relay amplification matrix used by the relay station

during the entire training phase. The received signal from the j-th pilot symbol within the

i-th training block is given by

y1,j,i =H
T

1 ⋅G(i) ⋅H1 ⋅x1,j +HT

1 ⋅G(i) ⋅H2 ⋅x2,j + ñ1,j,i

y2,j,i =H
T

2 ⋅G(i) ⋅H1 ⋅x1,j +HT

2 ⋅G(i) ⋅H2 ⋅x2,j + ñ2,j,i. (15.6)

The data model in (15.6) can be expressed in a more compact form using tensor notation,

cf. Chapter 4. To this end, let us introduce the following definitions

H
.
= [H1 H2] ∈ CMR×(M1+M2) (15.7)

G
.
= [G(1) 3G

(2) . . . 3G
(NR)] ∈ CMR×MR×NR . (15.8)

Using these definitions, the received training data can be rewritten as

Yk = G ×1HT
k ×2 (H ⋅X)T +N k ∈ C

Mk×NP×NR , k = 1,2 (15.9)

where X is defined in (15.2) and the tensors Y1 and Y2 contain the vectors y1,j,i and y2,j,i in

such a way that the second index in the tensor represents j = 1,2, . . . ,NP and the third index

represents i = 1,2, . . . ,NR. The tensors N 1 and N 2 collect of the noise vectors ñ1,j,i and ñ2,j,i

in a similar fashion.

We depict the structure of (15.9) in Figure 15.2. It should be noted that the structure

of (15.9) is similar to a Tucker-2 decomposition (cf. Section 4.3). However, the difference

to Tucker-2 is that the core tensor G is known (and can even be designed). Also, a certain

symmetry in the factors is present since the 2-mode factor includesH1 andH2 which are also

present in the 1-mode factor. Finally, the decomposition involves the pilot matrix X which

is also known and can be designed. These particular properties can be exploited to derive

efficient solutions to the channel estimation problem. Moreover, we obtain design rules and

recommendations on how to choose the pilot matrix X and the training tensor G in order to

facilitate the implementation of these channel estimation algorithms1.

1We use the term “design rules” for properties that X and G must fulfill for TENCE to be applicable and
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Figure 15.2.: Visualization of the structure of the received training data Y1 and Y2. We
observe Y1 and Y2 and we want to estimate H1 and H2. The tensor G and the matrices
X1,X2 can be designed.

15.3.2. Derivation of TENCE

Based on this training data we show the derivation of TENCE in this section. For notational

convenience, we ignore the contribution of the noise and write equalities. In the presence of

(colored) noise (cf. (14.10)), the following identities will only hold approximately. Also, we

derive the solution for UT1 only. Due to the symmetry of the problem, the solution for UT2 is

very similar.

First of all, consider the training tensor G. Let rG be the rank of the tensor G. Then G can

be expressed in terms of its CP decomposition (cf. (4.34))

G = I3,rG ×1G1 ×2G2 ×3G3, (15.10)

where I3,rG is the identity tensor of size rG × rG × rG and the matrices G1 ∈ C
MR×rG , G2 ∈

C
MR×rG , and G3 ∈ C

NR×rG represent the factor matrices of the decomposition. Instead of

designing the tensor G directly, we propose design rules for the matrices G1, G2, and G3

individually from the steps in the derivation where they appear.

“design recommendations” for additional properties that X and G may satisfy to improve the estimation
accuracy.
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Inserting (15.10) into (15.9) yields

Y1 = I3,rG ×1 (HT
1 ⋅G1) ×2 (XT ⋅HT ⋅G2) ×3G3. (15.11)

Using the elementary properties of n-mode products shown in (4.25) in Section 4.1, it is easy

to verify that the 3-mode unfolding of (15.11) satisfies

[Y1](3) =G3 ⋅ [(HT
1 ⋅G1) ◇ (XT ⋅HT ⋅G2)]T . (15.12)

In order to isolate the Khatri-Rao product, the multiplication by G3 must be inverted. To

guarantee that this inversion is unique, we require that NR ≥ rG and G3 to be a full rank

matrix. This leads to the first design rule for G:

Design Rule 1. The number of training blocks NR must satisfy NR ≥ rG and G3 must have

full column rank (rG).

Since we can design G3 we can choose this matrix such that it has orthogonal columns, i.e.,

GH
3G3 is a diagonal matrix. This makes it easy to guarantee that the inversion step is well

conditioned, which is favorable from a numerical standpoint (since inverting a non-orthogonal

matrix inevitably leads to noise amplification) and avoids explicit matrix inversion.

Design Recommendation 1. The 3-mode factor matrix G3 should have orthogonal columns.

We can now isolate the Khatri-Rao product in (15.12) in the following way

(G+3 ⋅ [Y1](3))T = (HT
1 ⋅G1) ◇ (XT ⋅HT ⋅G2) , (15.13)

where G+3 is the pseudo-inverse of G3 (which is a scaled version of GH
3 if G3 is chosen to have

orthogonal columns).

The Khatri-Rao product in (15.13) can be inverted up to one scaling ambiguity per column.

That means we can find matrices F 1 ∈ C
M1×rG and F 2 ∈ C

NP×rG such that

F 1 =H
T
1 ⋅G1 ⋅Λ (15.14)

F 2 =X
T ⋅HT ⋅G2 ⋅Λ−1, (15.15)

where Λ = diag {[λ1, λ2, . . . , λrG]} and λn represent arbitrary complex numbers. Since in the

presence of noise (15.13) is only approximately a Khatri-Rao product, the factors represent an

estimate. As discussed in Section 3.4, a Least-Squares optimal factorization of a Khatri-Rao
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product can be found by a sequence of SVDs2. The corresponding Least-Squares Khatri-Rao

factorization algorithm is shown in Section 3.4, Algorithm 1.

Note that for column p there is one scaling ambiguity in inverting the Khatri-Rao product

since ap ⊗ bp = (λp ⋅ ap)⊗ (bp/λp) , ∀λp ∈ C / {0}. In order to resolve the unknown parameters

λp we need to eliminate the unknown channels in (15.14) and (15.15). First of all, H2 can

easily be eliminated in (15.15) if we restrict the pilot matrixX to have orthogonal rows. Again,

this choice is also desirable from a numerical point of view because then the pilot matrix does

not affect the conditioning of the problem. Note that the rows can only be orthogonal if the

matrix is square or “flat” which yields the necessary condition NP ≥M1 +M2.

Design Rule 2. The number of pilot symbols per training block NP must satisfy NP ≥M1+M2.

Design Rule 3. The pilot symbol matrix X ∈ C(M1+M2)×NP must have orthogonal rows.

Note that we formulate the last property as a design rule instead of a recommendation since

the subsequent derivations assume that X has orthogonal rows. It is possible to generalize the

derivation to non-orthogonal pilots, this is discussed in Section 15.5.2.

From these design rules it also follows that the pilot transmissions of the two users are

mutually orthogonal. Therefore,

(XT
1 )+ ⋅XT

= [IM1
, 0M1×M2

] and (XT
2 )+ ⋅XT

= [0M2×M1
, IM2

] . (15.16)

Due to the orthogonality constraint, (XT
1 )+ and (XT

2 )+ are scaled versions of X∗1 and X∗2 ,

respectively. Using equation (15.16) in (15.15) we can eliminate H2 in the following fashion

F̃ 2
.
= (XT

1 )+ ⋅F 2 = (XT
1 )+ ⋅XT ⋅HT ⋅G2 ⋅Λ−1 =HT

1 ⋅G2 ⋅Λ−1
⇒ F̃ 2 ⋅Λ =HT

1 ⋅G2. (15.17)

In order to remove the unknown HT
1 we need to solve (15.17) for HT

1 . This solution is

only unique if G2 is a square or a flat matrix, i.e., rG ≥ MR. Also, to render this inversion

numerically stable, G2 should have orthogonal rows.

Design Rule 4. The rank of the tensor G must satisfy rG ≥ MR. Also, from design rule 1,

the number of training blocks NR must be greater or equal to rG. Therefore, to reduce the pilot

overhead, rG should be as small as possible. Consequently, we choose rG = MR. Note that it

follows that G1 and G2 are square matrices.

2A similar idea was used to solve a channel estimation problem for a one-way relaying scenario in [LV08].
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Design Rule 5. The two-mode factor matrix G2 must have full rank.

Design Recommendation 2. The two-mode factor matrix G2 should be an orthogonal ma-

trix.

Now we can solve (15.17) for HT
1 and insert this solution into (15.14). We obtain

HT
1 = F̃ 2 ⋅Λ ⋅G+2 ⇒ F 1 = F̃ 2 ⋅Λ ⋅G+2 ⋅G1 ⋅Λ (15.18)

F 1 = F̃ 2 ⋅ [(G+2 ⋅G1)⊙ (λ ⋅λT)] , (15.19)

where in the last step we have used the fact that Λ = diag {λ} and property (3.21). In order to

solve (15.19) for the unknown vector λ, we have to isolate λ ⋅λT on one side of the equation.

However, to achieve this, we need to move F̃ 2 to the other side. Since F̃ 2 is of size M1 × rG
this step requires M1 ≥ rG. For the smallest possible rG, which was chosen in design rule 4,

this condition reduces to M1 ≥MR. From the equivalent equation at the other user terminal,

we also get the condition M2 ≥MR. As a consequence, we now consider two cases separately.

First of all, we solve the case where both conditions are met, i.e., min{M1,M2} ≥MR. Then

we consider the case where this condition is not true. Note that TENCE is only expected

to outperform the LS-based compound channel estimator in case 1, as pointed out in the

beginning of this section. The second case is only shown for completeness to demonstrate that

the tensor-based approach can be used for arbitrary antenna configurations.

Case 1: min{M1,M2} ≥MR

In this case, we can solve (15.19) directly for λ ⋅λT in the following fashion

F̃
+

2 ⋅F 1 = (G−12 ⋅G1)⊙ (λ ⋅λT)
(F̃ +2 ⋅F 1)⊘ (G−12 ⋅G1) = λ ⋅λT. (15.20)

Note that since we assume rG =MR, the matrices G1 and G2 are square and hence the pseudo-

inverse is replaced by the matrix inverse. Here we apply the inverse Schur product ⊘ (i.e.,

element-wise division), which requires that the matrix G−12 ⋅G1 does not contain any zero

entries. This leads to another design rule

Design Rule 6. The factor matrices G1 and G2 must be chosen such that the matrix G−12 ⋅G1

does not contain any entries that are equal to zero or very close to zero.

In the presence of noise, (15.20) holds only approximately. Therefore, the matrix estimated

from (15.20) does not necessarily have rank one. In order to find the best approximation of λ
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we can proceed in a manner similar to the inversion of the Khatri-Rao product and additionally

exploit the symmetry of the matrix. The algorithm to estimate λ is summarized in Alorithm 9.

Algorithm 9 [RH10c] Estimation of λ for TENCE

• Compute the matrix L = (F̃ +2 ⋅F 1)⊘ (G−12 ⋅G1).
• Force the matrix to be symmetric by computing L̃ = 1

2
(L +LT).

• Since L̃ is symmetric, an SVD of this matrix is given by L̃ = UΣUT. An SVD of this
form can for instance be computed via the Takagi factorization [Tak24].

• Then, the least squares estimate for λ is given by λ̂ =
√
σ1 ⋅u1, where u1 represents the

first column of U and σ1 is the largest singular value of L̃.

Note that the estimation of λ involves one sign ambiguity since (−λ) ⋅ (−λ)T = λ ⋅λT.

From the estimate of λ we finally obtain estimates for the channel matrices with the help

of (15.14) and (15.15)

Ĥ1 = (F 1 ⋅ diag {λ̂}−1 ⋅G−11 )T (15.21)

Ĥ2 = ((XT
2 )+F 2 ⋅ diag {λ̂} ⋅G−12 )T . (15.22)

It is also possible to obtain a second estimate for H1 from F 2 by replacing X2 by X1 in

(15.22). However, since the estimate found from (15.21) is always more accurate, this additional

estimate for H1 will not be used in the simulations. Note that (15.21) involves the inverse of

G1. With the same reasoning as before, we therefore propose the corresponding design rule

for G1:

Design Rule 7. The 1-mode factor matrix G1 must have full rank.

Design Recommendation 3. The 1-mode factor matrix G1 should be an orthogonal matrix.

Note that from design rule 4 it follows that G1 is a square matrix.

Note that the sign ambiguity in λ leads to one sign ambiguity in the channel estimates:

instead of H1 and H2 we may estimate −H1 and −H2. However, since this sign cancels

in the transmission equations (14.6), this scaling ambiguity is irrelevant. This concludes the

channel estimation algorithm for Case 1.
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Case 2: 1 <min{M1,M2} <MR

Without loss of generality, we consider the case where M1 ≤ M2. Since F̃ 2 in (15.19) is a

“flat” matrix, we cannot solve (15.19) for the unknown matrix λ ⋅ λT directly. Essentially,

there are only M1 ⋅MR equations for M2
R unknowns. However, it is actually not required to

estimate all elements in λ ⋅ λT, because this matrix has rank one and hence does not have

M2
R degrees of freedom. It is not difficult to see that already 2MR − 1 elements from λ ⋅ λT

are enough to reconstruct the entire matrix via the following naive approach: the MR main

diagonal elements of λ ⋅ λT are equal to λ2
m from which we can obtain all λm up to one ±

ambiguity per coefficient. These unknown signs can be estimated from the MR − 1 elements

on the first off-diagonal of λ ⋅λT.

The approach we take to solve this case is to reduce the number of variables we estimate

from M2
R to M1 ⋅MR via a suitable design of the tensor G which then facilitates a well-defined

inversion. From the M1 ⋅MR estimated elements in λ ⋅ λT we can reconstruct the missing

elements using the rank-1 structure (cf., Algorithm 10) and then proceed in the same manner

as in the previous case.

To simplify the notation, we introduce the following definitions

G−12 ⋅G1 = G̃ = [g̃1 g̃2 . . . g̃MR
] , (15.23)

F 1 = [f1,1 f1,2 . . . f1,MR
] , (15.24)

i.e., g̃m and f1,m represent the m-th columns of G̃ and F 1, respectively. Note that we have

again used the assumption rG =MR. In order to proceed, we need the following lemma:

Lemma 15.3.1. [RH10c] For arbitrary matrices A ∈ CM×N , B ∈ CN×P , and C ∈ CN×P we

can define a matrix D ∈ CM×P as D = A ⋅ (B ⊙C). Then, the p-th column of D can be

expressed as

dp =A ⋅ diag {bp} ⋅ cp =A ⋅ diag {cp} ⋅ bp, (15.25)

where bp and cp represent the p-th column vectors of B and C, respectively and p = 1,2, . . . , P .

Proof. Obviously, for arbitrary vectors x,y ∈ CN we have that x⊙y = diag {x} ⋅y = diag {y} ⋅x.
Moreover, the p-th column of D is given by dp =A ⋅ (bp ⊙ cp). Combining these two identities

for x = bp and y = cp proves the lemma.

Using this lemma and the definitions (15.23) and (15.24), we rewrite the matrix equation

206



15.3. Tensor-based Channel Estimation (TENCE)

(15.19) into a system of matrix-vector equations

f1,m = F̃ 2 ⋅ diag {g̃m} ⋅λ ⋅ λm, m = 1,2, . . . ,MR (15.26)

Note that if we set the k-th element of the vector g̃m to zero, the k-th column of the matrix

F̃ 2 ⋅diag {g̃m} becomes zero. This is equivalent to removing the k-th column of F̃ 2 and the k-th

row of the parameter vector λ⋅λm in them-th matrix vector equation of (15.26). Consequently,

we can reduce the number of variables in each of the matrix-vector equations from MR to M1

if we place MR −M1 zeros in each of the vectors g̃m. This leads to the crucial design rule for

the second case:

Design Rule 8. The 1-mode and 2-mode factor matrices of the tensor G must be designed in

such a way that each column of the matrix G−12 ⋅G1 ∈ C
MR×MR contains at most min{M1,M2}

non-zero entries.

Note that design rule 8 does not contradict design rule 6 since for the first case we have

min{M1,M2} ≥ MR and hence all elements are allowed to be non-zero by rule 8 (and are

forced to be nonzero by rule 6).

Using this design we can solve all matrix-vector equations in (15.26) and hence obtain M1

entries of each column of λ ⋅λT. The elements we obtain are exactly the non-zero positions in

the matrix G̃. From these elements we can reconstruct an estimate of the full matrix λ ⋅ λT,

provided that M1 > 1.
3 This reconstruction algorithm is summarized in Algorithm 10.

At the end of this algorithm we have an estimate of λ ⋅ λT. Depending on the pattern of

the unknown elements, this estimate may not be exactly symmetric and it may also not be

exactly rank one. We therefore proceed in the same manner as in Case 1 to estimate the vector

λ from this matrix: First the matrix is forced to be symmetric. After that, a best rank-one

approximation is computed with the help of a singular value decomposition (cf. Algorithm 9).

The estimated vector λ̂ is then used to compute estimates for the channel matrices H1 and

H2 (cf. equations (15.21) and (15.22)).

15.3.3. Summary

The TENCE algorithm is summarized in Algorithm 11. Concerning the design rules for the

matrix X and the tensor G we have the following:

3Following the proposed design of G, for M1 = 1 we only obtain the main diagonal of λ⋅λT, i.e., λ2
i ,∀i. Therefore,

we cannot determine the sign of the individual λi in this case. However, M1 > 1 has been explicitly assumed,
and the case M1 = 1 is further discussed in Section 15.5.

207



15. Channel estimation

Algorithm 10 [RH10c] Rank-one matrix reconstruction

• The input to the algorithm is a matrix L which contains the estimates of λ ⋅λT we have
and the pattern of non-zero elements in the matrix G̃. The non-zero positions in G̃ are
the known elements in the estimate of λ ⋅λT.

• First of all, we can use the symmetry of λ ⋅λT by filling each unknown element li,j with
lj,i if the latter is known.

• If after this step there are unknown elements left. we continue by estimating the ratios
ρm

.
= λm/λm−1 for m = 2,3, . . . ,MR in the following fashion:

1. Set m = 2.

2. Obtain the set of column indices i ∈ I for which the elements (m, i) and (m − 1, i)
are known.

3. Obtain the set of row indices j ∈ J for which the elements (j,m) and (j,m− 1) are
known.

4. Estimate ρm as the arithmetic average of the ratios lm,i/lm−1,i and the ratios
lj,m/lj,m−1, ∀i ∈ I, j ∈ J .

5. If m <MR set m =m + 1 and go to 2).

• Now we can apply these ratios to fill the rest of the matrix. For every unknown element(i, j) in the matrix L, we check:

1. If the element (i, j − 1) is known, an estimate of li,j is given by li,j−1 ⋅ ρm.

2. If the element (i − 1, j) is known, an estimate of li,j is given by li−1,j ⋅ ρm.

3. If the element (i, j + 1) is known, an estimate of li,j is given by li,j+1/ρm.

4. If the element (i + 1, j) is known, an estimate of li,j is given by li+1,j/ρm.

• Again, if more than one estimate for li,j is available, an arithmetic average is computed.

M1 =M2 = 2 M1 =M2 = 3 M1 =M2 = 4

Figure 15.3.: Structure of the matrix S for MR = 5 and different values for min{M1,M2}.
Empty circles represent zeros, filled circles represent ones.
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Algorithm 11 [RH10c] Summary of the TENCE algorithm at UT1. For UT2 we replace Y1

by Y2 in the first step and X1 by X2 in the third step. Moreover, in the final result (15.21)
and (15.22) we exchange Ĥ1 and Ĥ2 and replace X1 by X2.

• Compute the matrix (G+3 ⋅ [Y1](3))T, cf. (15.12).
• Factorize it into the two Khatri-Rao factor matrices F 1 and F 2 using Algorithm 1.

• Compute F̃ 2 = (XT
1 )+ ⋅F 2.

• If min{M1,M2} ≥MR: compute L = (F̃ +2 ⋅F 1)⊘ (G−12 ⋅G1).
• If 1 <min{M1,M2} <MR:

– Let f1,m be the m-th column of F 1 and g̃m the m-th column of G̃ =G−12 ⋅G1.

– Compute lm = [F̃ 2 ⋅ diag {g̃m}]+ ⋅ f1,m for m = 1,2, . . . ,MR.

– Collect the vectors lm column-wise into the matrix L.

– Use Algorithm 10 to fill the elements in L which have not been estimated.

• Estimate λ as the best symmetric rank-one approximation of L using Algorithm 9.

• Compute the final channel estimates using equations (15.21) and (15.22).
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• The pilot matrix X ∈ CM1+M2×NP : The number of pilots NP must satisfy NP ≥M1 +M2

andX must have orthogonal rows (cf. design rules 2 and 3). A reasonable choice is given

by constructing a DFT matrix (cf. Appendix A.2) of size NP ×NP and then using the

first M1 rows for X1 and the next M2 rows for X2. To ensure that the transmit power

is limited to PT,i for each user terminal i = 1,2, X1 and X2 can be scaled individually,

such that the norm of each column is equal to PT,i. Note that NP =M1+M2 is sufficient

for the training, higher values can be used to increase the estimation accuracy in the

presence of noise. Another possible choice is given by Zadoff-Chu sequences [Chu72]

since these fulfill the required orthogonality conditions as well.

• The relay amplification tensor G:

– The rank rG must satisfy rG ≥MR according to design rule 4. A larger rank leads

to higher pilot overhead according to design rule 1. Therefore we choose rG =MR.

– The factor matrices G1 ∈ C
MR×MR , G2 ∈ C

MR×MR , and G3 ∈ C
NR×MR must have

full rank (MR) according to design rules 1, 5, and 7. Moreover, NR must satisfy

NR ≥ MR according to the design rules 1 and 4. Note that NR = MR is sufficient

for the training, higher values can be used to increase the estimation accuracy in

the presence of noise.

– The matrix G−12 ⋅G1 must have min{M1,M2} nonzero elements per column accord-

ing to rules 6 and 8. Note that this implies that this matrix should not have any

zero entries if min{M1,M2} ≥MR.

– The factor matrix G3 ∈ C
NR×MR should have orthogonal columns and the factor

matrices G1,G2 ∈ C
MR×MR should be orthogonal according to recommendations 1,

2, and 3.

The total number of pilots is equal to NP ⋅NR. Following the design rules we conclude that

at least (M1+M2) ⋅MR pilots are needed. Note that the total number of parameters that must

be identified is equal to M1 ⋅MR in H1 and M2 ⋅MR in H2. Therefore, the total number of

required pilots is equal to the total number of parameters that are identified. Note that this

does not correspond to the minimum possible pilot overhead since the number of observations

is indeed larger (by a factor of Mi at terminal i). To conclude this chapter we give an example

how a tensor G can easily be constructed that follows all the design rules.

• Choose G2 = IMR
.

• Set G3 to a MR ×MR DFT matrix (cf. Appendix A.2). If a larger number of training

blocks (frames) is desired, use a NR ×NR DFT matrix and truncate it to MR columns.
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• Then, compute G1 in the following way: If min{M1,M2} ≥MR: Set G1 =DMR
, where

DMR
is an MR ×MR DFT matrix. Otherwise set G1 =DMR

⊙S, where S is a circulant

matrix computed from the vector v = [1T
min{M1,M2}×1,0TMR−min{M1,M2}×1]T. That means

that the n-th column of S is equal to v shifted by n − 1 elements in a cyclic manner.

To illustrate the structure of S, Figure 15.3 displays S for MR = 5 and three different

values for min{M1,M2}. We have verified numerically that this design provides a full

rank matrix G1 for all combinations of MR, M1, and M2 up to MR = 50.

Note that this design of G also fulfills all design recommendations if min{M1,M2} ≥ MR.

Otherwise, G1 is not necessarily orthogonal which violates the design recommendation 3.

The amplification matrix G(i) which the relay uses in the i-th frame can be computed from

the matrices G1, G2, and G3 in the following fashion

G(i) = ci ⋅G1 ⋅ diag {[G3]i,∶} ⋅GT
2 , i = 1,2, . . . ,NR,

where [G3]i,∶ represents the i-th row of G3 and ci is chosen such that ∥G(i)∥
F
= 1. Therefore,

if min{M1,M2} ≥MR, the relay uses shifted DFT matrices during the training phase.

15.4. Iterative refinement for TENCE

The TENCE algorithm which we have derived in the previous section is a purely algebraic

closed-form solution [RH09e, RH10c]. Therefore, it is very fast, since it does not require any

iterative procedures. However it does not provide the MMSE solution. In this section we

show that the MSE can be further reduced by an iterative procedure [RH09d, RH10c]. The

mathematical manipulations that are used for this derivation are similar to Structured Least

Squares (SLS) [Haa97b] even though the underlying problem that is solved in [Haa97b] is

different (cf. Section 11.7).

As in the previous section we derive the solution for UT1. Due to the strong symmetries in

the data model, the solution for UT2 is very similar.

Let the initial estimates for the channel matrices H1 and H2 be given by Ĥ1 and Ĥ2 and

define Ĥ = [Ĥ1 Ĥ2]. Our goal is to improve the estimates Ĥ1 and Ĥ2 based on the received

training data. Therefore we need to define a measure for the quality of the channel estimates.

To this end, introduce the following definition

Ỹ1 = Y1 ×2 (XT)+ . (15.27)

Note that if X is chosen to have orthogonal rows as proposed in the previous section, (XT)+
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is a scaled version of X∗. Inserting (15.27) into (15.9) we find that in the absence of noise Ỹ1

has the following structure

Ỹ1 = G ×1HT
1 ×2HT. (15.28)

As we can see, the channel matrix H1 is present in the first and in the second factor. For

TENCE, we exploit this symmetry only in the second step, i.e., to estimate Λ. In the first

step of TENCE this is not considered since for the inversion of the Khatri-Rao product, H1

is eliminated in the second factor. This is the reason that the estimate obtained by TENCE

can still be improved by exploiting the structure of Ỹ1.

In the presence of noise, (15.28) holds only approximately. We can therefore judge the

quality of the channel estimate via the norm of the residual tensor Ỹ1 − G ×1 ĤT

1 ×2 ĤT
.

In order to minimize this norm we introduce update terms ∆H1 and ∆H2 for the channel

estimates Ĥ1 and Ĥ2, respectively. Since we already have an initial estimate we additionally

apply regularization to enhance the numerical stability. This ensures that the update terms

are small compared to the initial solution. Similar to the approach taken for SLS in [Haa97b],

the overall cost function we minimize can be written in the following way4

J(∆Hk) = ∥Rk∥2H + κ21 ∥∆H1,k∥2F + κ22 ∥∆H2,k∥2F , (15.29)

where Rk is the residual tensor after the k-th iteration which is given by

Rk =Ỹ1 −G ×1 (Ĥ1 +∆H1,k)T ×2 (Ĥ +∆Hk)T . (15.30)

Here, ∆H1,k and ∆H2,k represent the updates after the k-th iteration and ∆Hk = [∆H1,k, ∆H2,k].
Moreover, the terms κ1 and κ2 in (15.29) are given by κ1 =

√
M1/α and κ2 =

√
M2/α where

α ∈ R, α > 0 controls the amount of regularization used (the larger α, the less regularization)5.

The cost function (15.29) represents a quadratic Least Squares problem that does not have a

4This cost function ignores the fact that the noise is not white due to the forwarded relay noise. Since an
initial estimate of the channel matrices is already available via TENCE, the cost function can be extended
to take the noise correlation into account. This is achieved by replacing ∥Rk∥H in the cost function by

vec{Rk}H ⋅ Γ̂
−1
⋅ vec{Rk}, where Γ̂ is an estimate of the noise covariance matrix. However, in simulations

we have found no significant improvement of the modified iterative scheme in terms of the channel estimation
accuracy. Since this modification significantly complicates the presentation of the algorithm, it is omitted here
for clarity.

5Our simulations have shown that the performance is not very sensitive to the choice of the regularization
parameter α. For a low SNR, a moderate amount of regularization (α ≈ 100) enhances the numerical stability,
but α should not be chosen too small. Moreover, for a high SNR, regularization is not needed and we can
choose α =∞. If not stated otherwise, we use α = 100 for all the simulations.
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closed-form solution. However, it can be solved iteratively by linearizing it locally and solving

a sequence of linear Least Squares problems [Haa97b]. In each iteration, the terms ∆H1,k and

∆H2,k are updated according to the following rules

∆H1,k+1 =∆H1,k +∆∆H1,k (15.31)

∆H2,k+1 =∆H2,k +∆∆H2,k, (15.32)

where the initial values are given by

∆H1,k=0 = 0MR×M1
and ∆H2,k=0 = 0MR×M2

. (15.33)

Our goal is to find ∆∆H1,k and ∆∆H2,k that minimize the cost function in the k-th iteration.

As shown in Appendix E.1, these updates can be found via

⎡⎢⎢⎢⎢⎣
vec{∆∆H1,k}
vec{∆∆H2,k}

⎤⎥⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎢⎢⎢⎣

−F (1)
k

−F (2)
k

κ1 ⋅ IM1⋅MR
0M1⋅MR×M2⋅MR

0M2⋅MR×M1⋅MR
κ2 ⋅ IM2⋅MR

⎤⎥⎥⎥⎥⎥⎥⎦

+ ⎡⎢⎢⎢⎢⎢⎢⎣
vec{Rk}

κ1 ⋅ vec{∆H1,k}
κ2 ⋅ vec{∆H2,k}

⎤⎥⎥⎥⎥⎥⎥⎦
, (15.34)

where the matrices F
(1)
k

and F
(2)
k

are given in (E.10) and (E.11), respectively.

The SLS-based iterative refinement proceeds by computing the updates according to (15.34)

and applying these updates as shown in (15.31) and (15.32). Different criteria can be used

to check whether the iterative procedure has converged. For example, we can compute the

norm of the update terms ∆∆H1,k and ∆∆H2,k and terminate the algorithm when this norm

drops below a predefined threshold. Alternatively, define the quantity rk = ∥Rk∥H, which is

a measure of the fit of the current channel estimates to the data received during the training

phase. Then we can terminate the iteration if rk − rk+1 < δ for a predefined threshold6 δ > 0.

Moreover, if rk+1 > rk, the (k + 1)-th iteration is ignored and the k-th iteration is used as a

final solution. The SLS-based refinement of TENCE is summarized in Algorithm 12.

6The threshold parameter δ represents a trade-off between computational complexity and estimation accuracy.
We observed that δ = 10−3 is a reasonable value. Smaller values lead to more iterations, however these do not
result in a significant improvement in accuracy. Larger values of δ terminate the algorithm too early. As we
show in the simulations, for this choice of δ the number of iterations is between one and four, even in critical
scenarios.
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Algorithm 12 [RH10c] Summary of the SLS-based iterative refinement for TENCE at UT1.
For UT2 we consistently exchange H1 with H2 and replace Y1 by Y2 in equations (15.30),
(E.12), and (15.34).

1. Initialize Ĥ1 and Ĥ2 with the estimates obtained via TENCE.

2. Set ∆H1,k=0 = 0MR×M1
, ∆H2,k=0 = 0MR×M2

, and k = 0.

3. Compute Ỹ1 from the received data during the transmission phase according to Ỹ1 =

Y1 ×2 (XT)+.
4. Calculate the residual tensor Rk as shown in (15.30) and the matrices F

(1)
k

and F
(2)
k

from (E.10) and (E.11), respetively.

5. Solve the least squares problem in ∆∆H1,k and ∆∆H2,k according to (15.34).

6. Apply the updates to obtain ∆H1,k+1 = ∆H1,k + ∆∆H1,k and ∆H2,k+1 = ∆H2,k +
∆∆H2,k.

7. Compute rk = ∥Rk∥H. If k > 1 test whether the last iteration has resulted in a significant
innovation by comparing rk − rk+1 with the threshold δ. If the innovation is greater than
δ set k = k +1 and go to step 4. If the innovation is negative, ignore the update from the
k-th iteration.

8. The improved channel estimates are given by Ĥ1 +∆H1,k+1 and Ĥ2 +∆H2,k+1.
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15.5. Discussion

15.5.1. Computational complexity

The LS-based channel estimation scheme presented in Section 15.2 requires solving an overde-

termined set of Mi ⋅NP equations for Mi ⋅ (M1 +M2) unknowns, where NP ≥M1 +M2.

In TENCE, since most matrices that have to be inverted are chosen orthogonal, the only

explicit matrix inversion we require is the pseudo-inverse of F̃ 2 which is of size Mi ×MR for

i = 1,2. Therefore, the complexity is dominated by the Least-Squares Khatri-Rao factorization

of a matrix of size Mi ⋅NP×MR for which MR SVDs of size NP×Mi are required (NB: for each

SVD, only the dominant singular vectors are needed). On the other hand, for the SLS-based

refinement, an overdetermined set of MR ⋅ (Mi + 1) ⋅ (M1 +M2) linear equations needs to be

solved for MR ⋅ (M1 +M2) variables in each iteration. For α = ∞ the number of equations

reduces to MR ⋅Mi ⋅ (M1 +M2).
15.5.2. Non-orthogonal pilots

The way the derivation of TENCE is presented, we rely on the fact that the pilot matrixX has

orthogonal rows (cf. design rule 3). This condition can be relaxed to allow a non-orthogonal

X by replacing the pseudo-inverse of XT
i used at various steps of the derivation by a block

of the pseudo-inverse of X. However, such a choice for X is detrimental in terms of the

channel estimation accuracy, as the simulation results in [GZL09b] have also verified. For a

more profound discussion of the suboptimality of non-orthogonal pilots, see also [BG06].

15.5.3. Single-antenna case

Since previous channel estimation scheme for two-way relaying with AF relays focus on the

single-antenna case [GZL09b], we briefly discuss this special case here. For M1 =M2 =MR = 1

the smallest pilot overhead is achieved by choosing NR = 1 and NP = 2. The relay amplification

tensor G becomes a scalar g and therefore the factor matrices are trivially G1 = G2 = 1 and

G3 = g. Then, TENCE simplifies into the following algebraic equations for ĥ1 and ĥ2 estimated

at UT1

ĥ1 =

¿ÁÁÀ x∗1 ⋅ yT1∥x1∥2 ⋅ g , ĥ2 =
x∗2 ⋅ yT1∥x2∥2 ⋅ g ⋅ ĥ1 , (15.35)

where x1,x2 ∈ C
1×NP are the pilot sequences and y1 ∈ C

1×NP is the received training data. Here,√
x denotes the principle square-root, i.e., for x = ∣x∣ ⋅ earg{x} ∈ C we have

√
x =
√∣x∣ ⋅ e arg{x}2 .
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We compare the channel estimation accuracy of TENCE in this special case with the ML

and LMMSE estimators from [GZL09b] in the simulations section. Note that the SLS-based

refinement does not provide any improvement in the single-antenna case. Also note that we

cannot replace the TENCE algorithm in the general MIMO case by a sequential application of

the SISO case presented here. The reason is that each estimate is only unique up to one sign

ambiguity which would leave the estimates of the channel matrices with one sign ambiguity per

element. These ambiguities alter the subspace which renders SVD-based pre-/postprocessing

infeasible.

For the case min{M1,M2} = 1 and MR > 1, TENCE is not applicable. However, this case

is actually not very relevant for the channel estimation schemes discussed in this chapter. To

see why, let us first of all consider the case M1 =M2 = 1. In this setup, the effective channel

matrices that are used to convey the transmitted signals h
(e)
i,j = h

T
i ⋅ G ⋅ hj are scalars for

all i = 1,2 and j = 1,2. Consequently, providing both terminals with channel knowledge of

h1 ∈ C
MR×1 and h2 ∈ C

MR×1 would be an unnecessary overhead. Only the relay requires channel

knowledge to compute a suitable matrix G which is obtained from one set of NP ≥ 2 pilots as

shown in 15.3. Next, the scalar channel taps h
(e)
i,j are estimated directly by transmitting a set

of NP,D ≥ 2 “dedicated” pilots (i.e., keeping G fixed, cf. Section 15.5.4).

What remains is the case M1 = 1 < M2. Since M1 = 1, only one data stream can be

transmitted. Therefore, UT2 uses its M2 antennas for beamforming which reduces the size

of the effective channels again to scalars. As in the previous case, the relay estimates the

channels h1 and H2 directly from NP ≥M2+1 pilots to determine a suitable matrix G. Then,

UT1 transmits NP,S ≥ 1 pilot symbols and UT2 remains silent. This enables UT2 to estimate

hT
1 ⋅G ⋅H2 ∈ C

1×M2 . Based on this channel UT2 computes suitable beamforming weights.

Applying this beamforming, the effective channels are reduced to scalars, which, as before are

estimated directly by transmitting a set of NP,D ≥ 2 dedicated pilots.

15.5.4. Dedicated pilots

Once both terminals and the relay have an estimate of both channelsH1 andH2 they can use

this information to compute a suitable relay amplification matrix G for the data transmission

(e.g., via ANOMAX [RH09a] or using the ZF/MMSE transceivers from [UK08]). Since the

data is transmitted over the effective channelsHT
1 ⋅G ⋅H2 andHT

2 ⋅G ⋅H1, the precoding and

decoding vectors can be chosen from the left and right singular vectors of the effective channel

matrices. In the case of single-stream transmission this transforms the data model into

y1 = h
(eq)
1,1 ⋅ s1 + h(eq)1,2 ⋅ s2 + n(eq)1 (15.36)
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y2 = h
(eq)
2,2 ⋅ s2 + h(eq)2,1 ⋅ s1 + n(eq)2 , (15.37)

where the “equivalent” channels h
(eq)
i,j are given by h

(eq)
i,j = γ ⋅ dTi ⋅HT

i ⋅ G ⋅Hj ⋅ pj . Here

dTi ∈ C
1×Mi is the decoding vector used at terminal i and pj ∈ C

Mj×1 represents the precoding

vector used at terminal j. Then the crucial ANC step to subtract the self-interference requires

precise knowledge of h
(eq)
i,i at terminal i. Obtaining this channel from the estimates of H1

and H2 is possible, however, due to the multiple estimated quantities that are involved (H i,

G, di, pi) the errors may accumulate and the estimate can be unreliable. Therefore, an

alternative is given by estimating the equivalent channels via another set of so-called dedicated

pilots. Dedicated pilots are transmitted via the equivalent channels for fixed precoding and

decoding vectors in order to obtain a new estimate the equivalent channels h
(eq)
i,j . Since in

this case our transmission model is dual input single output, already two dedicated pilots are

sufficient to estimate h
(eq)
i,i and h

(eq)
i,j at terminal i. If instead of one stream, r streams are used

simultaneously, 2r dedicated pilots are required.

15.6. Simulation results
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Figure 15.4.: CCDF of the RSE for TENCE and the SLS-based iterative refinement. Scenario:
M1 =M2 =MR = 5, SNR = 20 dB, ρR = ρ1 = ρ2 = 0 (uncorrelated Rayleigh fading).

In this section, simulation results are shown to compare the different channel estimation
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Figure 15.5.: Median of the RSE vs. the SNR for TENCE and the SLS-based iterative re-
finement. Scenario: M1 = 4, M2 = 5, MR = 3, ρR = 0.9, ρ1 = ρ2 = 0 (correlated Rayleigh
fading).

approaches and demonstrate the corresponding achievable channel estimation accuracies. We

first show the achievable channel estimation accuracy of the separate channelsH1 andH2 with

TENCE and its SLS-based iterative refinement. Then, we compare the LS-based compound

channel estimator with the tensor-based channel estimation approach in terms of the estimation

error of the compound channels.

For all simulations, the channel matrices are generated according to a correlated Rayleigh

fading distribution. The spatial correlation follows a Kronecker model, i.e.,

E{HNLOS,i ⋅HH
NLOS,i} =RR ∈ C

MR×MR (15.38)

E{HH
NLOS,i ⋅HNLOS,i} =Ri ∈ C

Mi×Mi , i = 1,2, (15.39)

where RR ∈ C
MR×MR and Ri ∈ C

Mi×Mi model the spatial correlation matrices at the relay

and and at user terminal i, respectively. For simplicity, the matrices RR and Ri are chosen

such that their main diagonal elements are equal to one and the magnitude of all off-diagonal

elements is equal to ρR and ρi, respectively. The channels are assumed to be constant during

the training phase.
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Figure 15.6.: Mean RSE vs. regularization parameter α for different SNRs. Scenario: M1 =

M2 = 2, MR = 4, ρR = ρ1 = ρ2 = 0 (uncorrelated Rayleigh fading).

15.6.1. Performance of TENCE and its SLS-based refinement

In this section we present a selection of simulation results demonstrating the accuracy achiev-

able with TENCE and its SLS-based refinement.

As a measure of the accuracy, we compute the relative squared estimation error (RSE)

defined as

RSE(H, Ĥ) = min
p∈{1,−1}

∥H − p ⋅ Ĥ∥2
F∥H∥2F , (15.40)

where p accounts for the sign ambiguity in the estimation of the channels. The estimation

error curves are labeled as He11, He12, He21, and He22, where the first number indicates the

terminal which estimates the channel referenced by the second number. For instance, He12

represents the estimate of H2 at UT1.

If not stated otherwise, the design of the training data follows the rules derived in Section 15.3

and we choose NR = MR and NP = M1 +M2 to minimize the pilot overhead. Moreover, the

default values for α and δ are α = 100, δ = 10−3. We use a fixed transmit power of PT = 1 for

both terminals and the relay and vary the noise power PN at the terminals and at the relay

as a function of the SNR = 1/PN.

The first result shown in Figure 15.4 corresponds to an uncorrelated Rayleigh fading scenario
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Figure 15.7.: Number of iterations for the SLS-based refinement vs. the SNR for different
choices of α and δ. Scenario: M1 =M2 = 2, MR = 4, ρR = ρ1 = ρ2 = 0 (uncorrelated Rayleigh
fading).

where each terminal is equipped with five antennas. We show the complementary cumulative

distribution function (CCDF) of the RSE (i.e., the probability that the RSE exceeds its ab-

scissa) for a fixed SNR of 20 dB and randomly drawn channel realizations. Dashed lines

represent the initial estimate obtained via TENCE and solid lines are used for the SLS-based

iterative refinement. We observe significant improvements via the iterative scheme in the ter-

minals’ own channels to the relay and mild improvements in the channels between the other

terminal and the relay. Moreover, the slope of the CCDF is steeper for the SLS-based itera-

tive refinement which means that their estimates are numerically more stable than the initial

TENCE estimates.

A correlated Rayleigh fading scenario is investigated in Figure 15.5 where we choose M1 =

4,M2 = 5,MR = 3,K1 =K2 = 0, ρ1 = ρ2 = 0, and ρR = 0.9. Therefore, a strong spatial correlation

at the relay is present which impacts both H1 and H2. We observe significant improvements

obtained by the SLS-based iterative refinement for the estimates of each terminal’s own channel

to the relay since the iterative channel estimate exploits the fact that each terminal’s own

channel is present in the first as well as the second mode of the training tensor.

The impact of the design parameters α and δ on the performance of the SLS-based iterative

refinement is shown in Figures 15.6 and 15.7. Here, we consider a scenario with uncorrelated

220



15.6. Simulation results

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

SNR [dB]

 

 

He11 TENCE
He11 ML
He11 LMSNR
He12 TENCE
He12 ML
He12 LMSNR

M
e
d
ia
n
R
S
E

Figure 15.8.: Median of the RSE vs. the SNR comparing TENCE with the ML and the LMSNR
estimates from [GZL09b]. Scenario: M1 =M2 =MR = 1, (Rayleigh fading).

Rayleigh fading (K1 = K2 = 0, ρR = ρ1 = ρ2 = 0) for M1 = M2 = 2 and MR = 4 antennas. In

Figure 15.6 we depict the mean RSE for different choices of the regularization parameter α and

the SNR. Note that the last point α = ∞ corresponds to the case where no regularization is

used at all. We observe that for a low SNR a mild amount of regularization (α ≈ 100) helps to

lower the mean RSE and that this effect diminishes for higher SNRs. For a very high SNR, we

can skip the regularization completely by setting α = ∞. For the same scenario, the average

number of iterations of the SLS-based refinement is depicted in Figure 15.7. We observe a

slight increase in the number of iterations for the cases where a mild amount of regularization

is used. Moreover, we compare two different choices of the threshold parameter δ. Obviously,

for δ = 10−6, significantly more iterations are required. However, as evident from Figure 15.6,

these additional iterations do not lead to a visible improvement in the RSE. Consequently,

δ = 10−3 is a reasonable choice. For a high SNR, the SLS-based iterative refinement always

terminates after two iterations. This means that the second iteration does not improve the

norm of the residual tensor anymore. Consequently, one could even limit the number of

iterations to one without losing any performance in the high SNR regime.

Finally, Figure 15.8 shows the comparison of TENCE with the ML and LMSNR channel

estimators proposed in [GZL09b]. Since the latter are only applicable to the SISO case, we

set M1 = M2 = MR = 1. Note that in this case, TENCE simplifies to the equations shown in

Section 15.5.3. Also, we consider a NLOS scenario, i.e., K1 =K2 = 0. We observe that in terms
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Figure 15.9.: Median rCEE vs. the SNR. Scenario: M1 = M2 = 4, MR = 2, ρR = ρ1 = ρ2 = 0
(uncorrelated Rayleigh fading).

of the Median RSE, TENCE and ML perform almost equally and outperform the suboptimal

LMSNR scheme. It should be noted that the complexity of the closed-form TENCE algorithm

is lower than the complexity of ML or LMSNR.

15.6.2. Comparison between compound and tensor-based estimator

In order to compare the LS-based compound channel estimator proposed in Section 15.2 with

the tensor-based approach presented in Sections 15.3 and 15.4 we consider the relative estima-

tion error (rCEE) of the compound channels defined via

rCEEi,j =

∥H(e)i,j − Ĥ(e)i,j ∥2
F

∥H(e)i,j ∥2F
. (15.41)

Figures 15.9 and 15.10 depict the rCEE1,1 and rCEE1,2 achieved via different approaches. The

curves for UT2 (i.e., rCEE2,1 and rCEE2,2) are omitted since they coincide with the ones for

UT1 due to the symmetry of the problem. The curves labeled “SLS” depict the tensor-based

approach using TENCE and the SLS-based iterative refinement with MR ⋅ (M1 +M2) pilots.
The curves labeled “LS” show the LS-based approach for the estimation of the compound

channel. Since LS requires only M1 +M2 pilots, two sets of curves are shown: One set that
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Figure 15.10.: Median rCEE vs. the SNR. Scenario: M1 = M2 = 4, MR = 4, ρR = ρ1 = ρ2 = 0
(uncorrelated Rayleigh fading).

corresponds to the minimum number of pilots and another set where the number of pilots

has been chosen to MR ⋅ (M1 +M2) for a fair comparison to the tensor-based approach. Both

simulations assume M1 = M2 = 4 antennas at the user terminals. The number of antennas

at the relay is set to MR = 2 for Figure 15.9 and to MR = 4 for Figure 15.10. The relay

amplification matrix G is chosen as a DFT matrix (cf. Appendix A.2). We observe that in

both cases, the channel H
(e)
1,1 , which conveys the self-interference, is estimated more accurate

by the tensor-based approach. The estimation accuracies for the channel matrixH
(e)
1,2 achieved

by LS and SLS are equal for MR = 2 and SLS is slightly worse for MR = 4 (comparing SLS and

LS for the same number of pilots).

15.7. Summary

In this chapter we discuss channel estimation schemes for two-way relaying with AF MIMO

relays first proposed by us in [RH09e, RH09d, RH10c]. We investigate two channel estimation

approaches. First, the LS-based estimator for the compound channels is introduced. It rep-

resents a simple and robust scheme with a small pilot overhead. However, it fails to provide

the terminals with transmit CSI for non-symmetric relay amplification matrices. Moreover, it

ignores the structure of the compound channel matrices which provides room for improvements

in the channel estimation accuracy. Then, we introduce a tensor-based approach for estimating
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the separate channel matrices between the terminals and the relay. We first derive the closed-

form TENCE algorithm using the tensor-based algebraic concepts introduced in Chapter 4

and the Least-Squares Khatri-Rao factorization shown in Chapter 3 of this thesis. Further-

more, we propose design rules for the training symbols and the relay amplification matrices

that are required for the implementation of TENCE as well as recommendations that improve

its estimation accuracy. In a subsequent step we demonstrate that the estimates obtained via

TENCE can be further improved by an iterative algorithm based on Structured Least Squares

(see Section 11.7 for a discussion of SLS in the context of ESPRIT-type algorithms). We show

via simulations that significant improvements are achievable and, depending on the scenario,

between one and four iterations are sufficient.

Comparing the two approaches we find that the tensor-based approach yields more accurate

estimates of the compound channel matrices that convey the self-interference if the number

of antennas at the relay is smaller than the number of antennas at the terminals. More-

over, it always provides the user terminals with transmit CSI, even for non-symmetric relay

amplification matrices.
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We now shift our focus to the design of the relay amplification matrix for two-way relaying

with a MIMO AF relay. Based on the CSI acquisition concepts discussed in the previous

section, the relay can adapt its amplification matrix to the current channel state. We first

show in Section 16.1 that this matrix has an impact on the effective channel matrices as well

as the noise covariance matrices that each user experiences. Therefore, finding a design of this

matrix that provides the optimal system sum-rate is a mathematically challenging problem.

We summarize the state of the art in Section 16.2. As we show there, the major shortcoming

of the existing approaches for the relay amplification matrix design is that they are either based

on heuristic solutions [UK08, VH11] that do not show a satisfactory system performance or

on complicated numerical optimization procedures that are difficult to implement in practice

[ZLCC09, LSPL10].

To this end, we first present the Algebraic Norm Maximizing (ANOMAX) transmit strat-

egy, first proposed by us in [RH09a], in Section 16.3 which is a closed-form solution that

maximizes the norms of the effective channel matrices. This approach tends to concentrate

the energy onto the dominant eigenmodes of the effective channels which yields a very good

bit error rate for single-stream transmission schemes. However, it is less suitable for spa-

tially multiplexing several streams as the low-rank nature of the effective channels fails to

provide the full spatial multiplexing gain for high SNRs. In order to address this issue, we

present the “Rank-Restored” ANOMAX (RR-ANOMAX) scheme [RH10a] in Section 16.3.4.

RR-ANOMAX restores the required rank of the channel matrices in order to obtain the full

spatial multiplexing gain for high SNRs.

We then turn to the special case of single-antenna terminals in Section 16.4. We show that

in this case, the sum-rate can be expressed as the product of two Rayleigh quotients (which has

been shown before only in the high SNR regime by [LYC08]). We also demonstrate that the

optimal solution to this problem can be found via a semi-algebraic scheme based on generalized

eigenvectors (RAGES) [RH10b]. RAGES is significantly less complex than existing optimal

strategies based on numerical optimization procedures [ZLCC09]. We verify that RAGES

provides the optimal system sum-rate by comparing it numerically to the sum-rate optimal

Polynomial Time DC (POTDC) algorithm, proposed by us in [KVRH12, KRVH12].

Numerical results are shown in Section 16.5 before drawing the conclusions and outlining

possible directions of future work in Section 16.6.
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16.1. Problem description

16.1.1. Impact of the relay amplification matrix

Recall that the users’ received signals after the cancellation of the self-interference can be

expressed as given in (14.8) and (14.9) which is restated here for convenience

z1 =H
(e)
1,2 ⋅x2 + ñ1 (16.1)

z2 =H
(e)
2,1 ⋅x1 + ñ2. (16.2)

where H
(e)
i,j = γ ⋅H(b)i ⋅G ⋅H(f)j and R̃N,i = E{ñi ⋅ ñH

i } = γ2 ⋅H(b)i ⋅G ⋅RN,R ⋅GH ⋅H(b)Hi +RN,i.

Consequently, the choice of the relay amplification matrix G influences the effective MIMO

channel matrices which convey our signal of interest as well as the covariance matrix of the

effective noise contributions. In this chapter we investigate suboptimal choices of G motivated

by different goals, e.g., sum-rate maximization or Bit Error Rate (BER) minimization. In the

general case, the capacity of the MIMO two-way relaying channel is still not known since it in-

volves the joint optimization over the terminals’ transmit covariance matrices1 Ri = E{xi ⋅xH
i },

i = 1,2, and the relay amplification matrix G. This optimization problem is a rather compli-

cated coupled non-convex problem [LSPL10]. This motivates simple algebraic approximations

to arrive at tractable solutions.

A strong simplification that is often made is to decouple the users’ transmit strategies from

the relay amplification strategy [VH11]. This step simplifies the design significantly, albeit

optimality is in general lost. Yet, it is a practical solution that fits well into the algebraic

approach to system design we emphasize in this thesis.

Also, for the system under investigation the loss incurred due to this assumption is not very

severe. Once the relay amplification matrix is fixed, for the users the effective input-output

relation takes the form of (16.1) and (16.2), i.e., P2P MIMO links with colored noise. If

the channel matrix and the noise covariance matrix are known, the users can use any P2P

MIMO strategy to transmit data over the channels. For instance, SMUX and DET can be

used to maximize the data rate or to minimize the BER [PNG03] for the transmission over

the compound channels. For a fixed G these strategies are indeed “optimal”. The only reason

they are not optimal in general is that the relay could adopt its choice of G to the users’

transmit strategies if it knew them. However, this requires a joint design of both strategies

1Note that as highlighted in Section 14.3 we assume the transmit signals to be zero mean. If xi has a mean
different from zero, Ri should be defined as the correlation matrix Ri = E{xi ⋅xH

i }, not as the covariance

matrix E{(xi − E{xi}) ⋅ (xi − E{xi})H}.
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which is in general intractable.

We therefore design G independently and then treat (16.1) and (16.2) as two parallel P2P

MIMO links. Since the capacity of P2P MIMO is known, we can define a “capacity” of the

two-way relaying system as a function of G by summing the capacities of (16.1) and (16.2)

and dividing the result by two to account for the fact that we require two time slots in two-way

relaying. However, since the resulting number still depends on G, it is not a capacity in the

information theoretic sense. Hence, we refer to it as maximum mutual information (MMI).

Formally, we can express it as

MMI(G) = 1

2

⎛⎝CapacityPT,2

{H(e)1,2 ∣R̃N,1} +Capacity
PT,1

{H(e)2,1 ∣R̃N,2}⎞⎠ (16.3)

where PT,i = trace{Ri} is the i-th user’s transmit power and CapacityP {H ∣RN} denotes the
capacity of the P2P MIMO link with noise covariance matrix RN ∈ C

MR×MR and transmit

power P . This capacity can be computed as [Tel99]

Capacity
P

{H ∣RN} = argmax
Q≽0∣ trace{Q}=P log2 det (IMR

+R−1N ⋅H ⋅Q ⋅HH) (16.4)

where the maximization over the transmit covariance matrix Q leads to the water-filling al-

gorithm. Note that in (16.3), both effective channels H
(e)
1,2 and H

(e)
2,1 as well as both noise

covariance matrices R̃N,i, i = 1,2 depend on G.

16.1.2. Power constraint at the relay

Like every physical transmission device, the relay station’s transmit power is limited. There-

fore, when we compare transmission schemes we need to satisfy a power constraint for all

of them to render the comparison fair. The average relay’s transmit power (averaged over

symbols and noise realizations) can be computed via

E{∥r̄∥22} = trace{E{r̄ ⋅ r̄H}} (16.5)

= γ2 ⋅ trace{G ⋅H(f)1 ⋅R1 ⋅H(f)H1 ⋅GH +G ⋅H(f)2 ⋅R2 ⋅H(f)H2 ⋅GH +G ⋅RN,R ⋅GH}
Consequently, if we want to compute γ such that E{∥r̄∥22} = PT,R we need to know the users’

transmit strategies. On the other hand, these are a function of γ as well since γ scales the users’

effective channels and hence the effective SNR. Therefore, such a choice of γ requires a joint

(or at least iterative) design of the relay strategy and the users’ transmit covariance matrices.

Hence, to arrive at a practical, low-complexity design we need to perform approximations.
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Proposition 16.1.1. Choosing γ as

γ2 =
PT,R

trace{PT,1 ⋅G ⋅H(f)1 ⋅H(f)H1 ⋅GH + PT,2 ⋅G ⋅H(f)2 ⋅H(f)H2 ⋅GH +G ⋅RN,R ⋅GH} (16.6)

guarantees that E{∥r̄∥22} ≤ PT,R regardless of the users’ transmit covariance matrices.

Proof: cf. Appendix E.2.

The choice of γ in Proposition 16.1.1 corresponds to assuming that R1 and R2 are scaled

identity matrices. Note that the inequality E{∥r̄∥22} ≤ PT,R is in general not tight, i.e., the

power used by the relay is strictly lower than the upper limit PT,R. In fact, as the users

distribute their power on r > 1 spatial streams it tends to be by a factor of r lower. This is

shown for a special case in the following proposition.

Proposition 16.1.2. Consider the special case where M1 =M2 =MU and the users perform

spatial multiplexing over the effective channels in order to maximize their data rate. Then,

choosing γ according to (16.6) we have in the high SNR regime lim
PN→0

E{∥r̄∥22} = PT,R

min{MU,MR} ,
where PN =max{PN,1, PN,2, PN,R}.
Proof: cf. Appendix E.3.

However, there are special cases where the power can be adjusted exactly to the desired

PT,R. For instance, for the single-antenna case, the transmit covariance matrices are scalars

equal to the transmit powers PT,1 and PT,2. Consequently we have the following corollary

from Proposition 16.1.1:

Corollary 16.1.3. For M1 = M2 = 1 (single-antenna terminals), the inequality in Proposi-

tion 16.1.1 is tight, i.e., E{∥r̄∥22} = PT,R.

Proof. By inserting R1 = PT,1 and R2 = PT,2 into equation (16.5), we immediately ob-

tain (16.6).

Note that if we replace the instantaneous power constraint for the current channel realization

by an “ergodic” power constraint which is satisfied on average over all channel realizations given

a specific distribution, we may be able to compute the used power in closed form. Such an

assumption is reasonable if only long-term CSI is available at the relay. In this case, closed-

form power allocation strategies, for the Dual Channel Matching (DCM) scheme and the fixed

DFT matrix are shown in [JS10a].
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16.1.3. Single antenna terminals

In the special case where the user terminals have a single antenna (M1 = M2 = 1), the data

model can be significantly simplified. Since many publications on this special case exist, we

present the simplified model here.

After canceling the self-interference, the received signals can be expressed via (14.8) and (14.9),

which for a single antenna simplifies into

z1 = h
(e)
1,2 ⋅ x2 + ñ1 (16.7)

z2 = h
(e)
2,1 ⋅ x1 + ñ2, (16.8)

where h
(e)
i,j = h

(b)T
i ⋅Gγ ⋅ h(f)j and ñi = h

(b)T
i ⋅Gγ ⋅ nR + ni, i = 1,2. Since (16.7) comprises of

one scalar desired signal component and noise, it is easy to express the SNR in closed-form.

Let PR,i and P̃N,i denote the power of the desired signal component and the effective noise

component at UTi, i.e.,

PR,1 = E{∣h(e)1,2 ⋅ x2∣2} , PR,2 = E{∣h(e)2,1 ⋅ x1∣2} , and P̃N,i = E{∣ñi∣2} , (16.9)

so that the SNR at UTi is given by ηi =
PR,i

P̃N,i
. Since both, desired signal and noise component

are linear functions in Gγ , their powers become quadratic functions in the elements of Gγ . To

facilitate the further algebraic manipulation of measures derived from these powers (such as

SNRs and sum-rates) it is desirable to express the quadratic expressions into their canonical

form. Following the argumentation in Section 3.1.3, the following “canonical” expressions can

be derived:

Lemma 16.1.4. [RH10b] The powers of the desired signal component and the effective noise

component PR,i and P̃N,i can be written as quadratic forms in the vector gγ
.
= vec{Gγ} ∈ CM2

R×1

via

PR,1 = g
H
γ ⋅K2,1 ⋅ gγ ⋅ PT,2 (16.10)

PR,2 = g
H
γ ⋅K1,2 ⋅ gγ ⋅ PT,1 (16.11)

P̃N,i = g
H
γ ⋅ J i ⋅ gγ + PN,i, i = 1,2, (16.12)

where PN,i = E{∣ni∣2} and the matrices Ki,j ∈ C
M2

R×M
2
R and J i ∈ C

M2
R×M

2
R are given by

Ki,j = [(h(f)i ⋅h(f)Hi )⊗ (h(b)j ⋅h(b)Hj )]T
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J i = [RN,R ⊗ (h(b)i ⋅h(b)Hi )]T .

Moreover, the power consumed by the relay can be written as

E{∥r̄∥22} = gHγ ⋅Q ⋅ gγ , where Q =RT
R ⊗ IMR

(16.13)

and RR = E{r ⋅ rH} = h(f)1 ⋅h(f)H1 ⋅PT,1+h(f)2 ⋅h(f)H2 ⋅PT,2+RN,R is the relay’s receive correlation

matrix.

Proof: cf. Appendix E.4.

Based on this lemma, the semi-algebraic RAGES scheme (proposed by us in [RH10b]) for

finding the sum-rate optimal relay amplification matrix is derived in Section 16.4 and compared

to the optimal solution found via the Polynomial Time DC (POTDC) algorithm (proposed

by us in [KVRH12, KRVH12]) in Section 16.5. In extension to [KRVH12], we present a low-

complexity version of RAGES in this thesis, see Appendix E.9.

16.2. State of the art

As the general state of the art in (two-way) relaying was already discussed in Section 14.1, we

focus on existing literature related to the design of the relay amplification matrix in two-way

relaying with MIMO AF relays here.

For the general MIMO case, the sum-rate optimal relay amplification strategy is still not

known. However, many sub-optimal algebraic solutions have been proposed. For instance, [UK08]

proposes the ZF and MMSE transceivers, which cancel the self-interference of the terminals as

well as their inter-stream interference at the relay station. A multi-user extension of this idea

is studied in [JS10b] where the relay is designed based on ZF and MMSE approaches and the

users’ beamforming strategies are optimized. The Dual Channel Matching (DCM) approach

is introduced in [VH11], along with an upper and a lower bound on its achievable sum-rate.

The main drawback of [UK08] and [VH11] is that in terms of the relaying strategy, they are

proposed in an ad-hoc manner, i.e., not based on a cost function that should be optimized.

Hence their performance is sub-optimal with respect to sum-rate or bit error rate, as we show

in the numerical simulations in Section 16.5. Optimization-based strategies for finding the

users’ precoding and decoding matrices for the case where the relay station uses only a scaled

identity matrix are discussed in [LPC08]. The extension to the joint optimization of the relay’s

and the users’ pre- and decoders is shown in [LSPL10] and a multi-pair extension is shown in

[CLSO12]. However, [LSPL10, CLSO12] rely on gradient descent methods that have a high
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computational complexity and no guarantee to find the global optimum. Note that the opti-

mal beamforming design for a two-way relaying network of single-antenna relay nodes has been

well investigated too, e.g., [HNSG10, ZZC11, SD12, TW12] and many others. However, the

results are not applicable to MIMO relays since these have more degrees of freedom in terms

of spatial adaptation. These shortcomings of existing approaches provide the motivation for

finding algebraic solutions for the design of the relay amplification matrix that are inspired by

optimizing a system parameter (e.g., bit error rate or sum-rate, as shown in Section 16.3.1)

and hence outperform existing algebraic approaches.

For the special case of single-antenna terminals, the optimal beamforming strategy was first

derived in [ZLCC09]. However, [ZLCC09] requires a numerically quite involved procedure.

First, the problem is recast in terms of finding an unknown complex 2 × 2 matrix, then rate

profiles are introduced, an equivalent power minimization problem is cast, and then solved via

a semi-definite relaxation step. Note that [ZLCC09] also describes the capacity region as well

as the achievable rate region. In [LYC08], the approximate sum-rate for high SNR is formu-

lated in terms of a product of Rayleigh quotients and maximized by a General Power Iterative

algorithm. Both methods require complicated iterative optimization-based algorithms to find

the solution. This motivates why we aim at finding algebraic approaches for computing the

sum-rate optimal relay amplification matrix. As we show in Section 16.4, a semi-algebraic algo-

rithm based on generalized eigenvectors provides the optimal sum-rate while being significantly

less complex compared to [ZLCC09].

Note that in [KVRH12, KRVH12] we demonstrate that the maximization of the product

of Rayleigh quotients is a special case of a class of problems referred to as DC (Difference

of Convex functions). While DC problems are in general NP-hard, a subset of these can be

solved efficiently in polynomial time via a sequence of semi-definite problems obtained by

local linearizations of the non-convex parts of the cost function. The underlying Polynomial-

Time DC (POTDC) algorithm and its application to finding the sum-rate optimal strategy for

two-way relaying with single-antenna terminals are discussed in [KVRH12, KRVH12].

16.3. Algebraic Norm Maximizing (ANOMAX) transmit strategy

In this section we discuss the Algebraic Norm Maximizing (ANOMAX) transmit strategy

first introduced in [RH09a]. ANOMAX represents a very simple and fully algebraic design

of G obtained via an intuitively designed cost function which is introduced in Section 16.3.1.

ANOMAX tends to concentrate the energy onto the dominant eigenmodes of the effective

channels, which yields a very good BER performance and renders it an attractive approach to
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systems where we target diversity optimization. However, in terms of system sum-rate, a more

even distribution of power across eigenmodes is required, especially in the high SNR regime.

A modified version of ANOMAX that restores the rank of the effective channels when needed

is discussed in Section 16.3.4.

16.3.1. Derivation of ANOMAX

Recall that the users’ received signals after the cancellation of the self-interference can be

expressed as given in (14.8) and (14.9) which is restated here for convenience

z1 = γ ⋅H(e)1,2 ⋅x2 + ñ1 (16.14)

z2 = γ ⋅H(e)2,1 ⋅x1 + ñ2. (16.15)

We observe that the desired signals xi, i = 1,2 are conveyed through the effective channelsH
(e)
1,2

and H
(e)
2,1 , respectively, and hence we should design G such that the transmission over these

channels is improved. The difficult task is to design an appropriate measure to evaluate how

the channel quality changes with G. The approach taken in ANOMAX is to simply consider

the Frobenius norms of these channels, ignoring the impact of G on the covariance matrix of

ñi. This cost function is motivated by the fact that the maximization of the Frobenius norm in

P2P MIMO systems yields the SNR-optimal transmission strategy DET as shown in [PNG03].

This motivates the cost function for ANOMAX which is given by

Gopt = argmax
G∣∥G∥F=1

(∥H(e)1,2∥2F + ∥H(e)2,1∥2F) (16.16)

= argmax
G∣∥G∥F=1

(∥H(b)1 ⋅G ⋅H(f)2 ∥2F + ∥H(b)2 ⋅G ⋅H(f)1 ∥2F) . (16.17)

Note that since the cost function scales linearly with the squared Frobenius norm of G we

have to confine this norm to an arbitrary constant since otherwise no maximum exists. We

have chosen norm one for simplicity2. The main advantage of this simple cost function is that

it admits an algebraic solution. Let g = vec{G}. Then, the vector g which maximizes (16.16)

can be computed via

2Remember that, in order to satisfy the power constraint at the relay, G is scaled by γ, cf. Section 16.1.2.
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• The dominant eigenvector of the matrix

RANO = ((H(f)2 ⋅H(f)H2 )T ⊗ (H(b)H1 ⋅H(b)1 )) + ((H(f)1 ⋅H(f)H1 )T ⊗ (H(b)H2 ⋅H(b)2 ))
(16.18)

• (or equivalently) The complex conjugate of the dominant left singular vector (u∗1) of the

matrix

KANO = [(H(f)2 ⊗H(b)T1 ) (H(f)1 ⊗H(b)T2 )] (16.19)

• (or equivalently) The dominant right singular vector (v1) of the matrix

KT
ANO =

⎡⎢⎢⎢⎢⎣
H
(f)T
2 ⊗H(b)1

H
(f)T
1 ⊗H(b)2

⎤⎥⎥⎥⎥⎦ . (16.20)

Proof: cf. Section E.5.

Note that RANO =K
∗

ANO ⋅RT
ANO.

16.3.2. Weighted ANOMAX

The ANOMAX solution can easily be generalized into a “weighted” version [RH09a] by intro-

ducing a weighting coefficient into (16.16). This yields the modified cost function

G
(β)
opt = argmax

G∣∥G∥F=1
(β2 ⋅ ∥H(e)1,2∥2F + (1 − β)2 ⋅ ∥H(e)2,1∥2F) (16.21)

where β ∈ [0,1] allows to distribute the weight unequally between the link from UT1 to UT2

and the link from UT2 to UT1. For β = 0.5 we have equal weighting between both links as

before. Using similar steps as above, the solution to this cost function becomes the dominant

eigenvector of the modified matrix R
(β)
ANO

R
(β)
ANO

= β2 ⋅ ((H(f)2 ⋅H(f)H2 )T ⊗ (H(b)H1 ⋅H(b)1 )) + (1 − β)2 ⋅ ((H(f)1 ⋅H(f)H1 )T ⊗ (H(b)H2 ⋅H(b)2 ))
or equivalently, the conjugate of the dominant left singular vector of the modified matrix

K
(β)
ANO

K
(β)
ANO

= [β ⋅ (H(f)2 ⊗H(b)T1 ) (1 − β) ⋅ (H(f)1 ⊗H(b)T2 )] , (16.22)
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which satisfies R
(β)
ANO

= R
(β)∗
ANO

⋅K(β)T
ANO

. This weighting adds more flexibility to the system

design, since it allows to distribute the power unevenly between the two links. The norm of

one of the channels can be increased further at the cost of a reduction in the norm of the other

channel. The ratio by which the power can be shifted depends on the channel realizations and

on the antenna configuration. The more relay antennas we have, the larger this ratio. For

instance, for MR = 4, a typical value for this ratio would be 10. We have shown that this

weighting can be used to lower the required transmit power at the relay in order to achieve

certain SNR targets in near/far scenarios [RH09c]. For instance, if UT1 has a higher SNR

target than UT2 we can set β > 0.5 to shift more power onto H
(e)
1,2 .

16.3.3. Discussion

To gain further insights into the ANOMAX solution, we first investigate some special cases.

The following proposition establishes a link between ANOMAX and DCM3.

Proposition 16.3.1. For the special case M1 =M2 = 1 (single-antenna terminals), ANOMAX

and DCM are identical.

Proof: cf. Appendix E.6.

As highlighted in Appendix E.6 it follows from the proof of Proposition 16.3.1 that ANOMAX

is most efficient for the case of colinear channels and least efficient for the case of orthogonal

channels where hH
1 ⋅ h2 = 0. Note that it also follows from this proposition that the rank of

G is less than or equal to two in this special case. For the MIMO case we have the following

result for the limiting values of β:

Proposition 16.3.2. In the special cases β = 0 and β = 1, we have the following rank-one

solutions

G(β=1) = v(b)1,1 ⋅u(f)H2,1 and G(β=0) = v(b)2,1 ⋅u(f)H1,1 , (16.23)

where u
(f)
n,1 is the dominant left singular vector of H

(f)
n and v

(b)
n,1 is the dominant right singular

vector of H
(b)
n , n = 1,2, respectively.

Proof: cf. Appendix E.7.

Note that for reciprocal channelsH
(f)
n =Hn =H

(b)T
n , equation (16.23) simplifies toG(β=1) =

u∗1,1 ⋅ uH
2,1 and G(β=0) = u∗2,1 ⋅ uH

1,1, where un,1 is the dominant left singular vector of Hn for

n = 1,2.

3DCM chooses G according to G =H
(b)H

2 ⋅H(f)H

1 +H(b)H

1 ⋅H(f)H

2 [VH11].
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Consequently, in the limiting cases β = 0 and β = 1, ANOMAX directs all the energy onto

the dominant eigenmode of one of the links, yielding effective channel matricesH
(e)
1,2 andH

(e)
2,1

that are rank one. For other values of β, both links are taken into account and the matrix

G has a higher rank. However, for maximizing the norms of the effective channel matrices it

is still best to focus the energy on the dominant eigenmode of the effective channel matrices

as much as possible. Consequently, we typically have the situation that the effective channel

matrices H
(e)
1,2 and H

(e)
2,1 are almost rank-one.

Therefore, ANOMAX should be combined with a single-stream transmission technique over

the effective channels, e.g., DET. DET results in an SNR gain of λmax, where λmax is the

largest eigenvalue of H
(e)
i,j ⋅H(e)Hi,j [PNG03]. Since the effective channels are almost rank-

one we have ∥H(e)i,j ∥2F ≈ λmax. We therefore conclude that ANOMAX results in an SNR

improvement for DET, since the norm is maximized. However, sinceG also influences the noise

power, we cannot formally state that ANOMAX maximizes the SNR. Yet, as the simulations

demonstrate, ANOMAX yields a very good BER performance for single-stream transmission,

see Section 16.5.

16.3.4. Rank-Restored (RR)-ANOMAX

As highlighted in the previous section, the norm-maximization that was used as a cost function

for ANOMAX tends to concentrate the energy on the dominant eigenmodes of the effective

channels, yielding channel matrices that are almost rank-one. This is desirable if the system

design target is to maximize the diversity order for robust transmission with a low BER.

However, in terms of the system sum-rate, such a feature may be undesirable. If the terminals

have multiple antennas, these can also be used to spatially multiplex data streams, which

results in a significantly increased sum-rate. If the ANOMAX transmit strategy is used, the

second eigenmode is very weak which results in an unsatisfactory sum-rate performance as we

show in Section 16.5. In fact, to achieve the full multiplexing gain, the rank effective channel

matrices should have min{M1,M2,MR} non-zero eigenmodes.

As we show in the sequel it is easy to devise a scheme that adapts the rank of the channels

in order to inherit the good system performance of ANOMAX for low SNRs and restore the

required rank for high SNRs. The corresponding approach is called “Rank-Restored (RR)-

ANOMAX” [RH10a, RJH10].

The main idea is to start with the ANOMAX solution forG, leave its singular vectors intact,

and adjust its singular values depending on the required rank. To this end, let the SVD of

235



16. Relay amplification matrix design

GANOMAX be given by

GANOMAX = UA ⋅ΣA ⋅V H
A (16.24)

Then the singular value profile can be adjusted via the vector σ = [σ1, σ2, . . . , σMR
]T by

defining

G(σ) = UA ⋅ diag {σ} ⋅V H
A, (16.25)

where diag {σ} is a diagonal matrix containing the elements of the vector σ on its main

diagonal. Our new optimization problem therefore takes the following form

max
σ

MMI(G(σ)), s.t. ∥σ∥2 = 1 and σ1 ≥ σ2 ≥ . . . ≥ 0 (16.26)

where MMI(G(σ)) denotes the maximum mutual information achievable with the relay am-

plification matrix G(σ) which is introduced in (16.3). The constraints stem from the fact

that G(σ) is normalized to Frobenius norm one and the singular values are ordered and

non-negative.

Note that in the special case σi = 1/√MR, ∀i, the matrix
√
MR ⋅G(σ) becomes unitary. This

represents the best approximation of
√
MR ⋅GANOMAX by a unitary matrix in the Frobenius

norm sense, commonly referred to as the Procrustes approximation (see [GvL80], chapter 12).

The Procrustes approximation has been applied in array processing applications before, e.g.,

ESPRIT-based DOA estimation [ZS89].

The optimization problem in (16.26) can be simplified by taking into account the nature

of our parameters. First of all, the norm constraint on σ can be used to reduce the search

space to MR −1 dimensions by optimizing over σ̄ = [σ2/σ1, . . . , σMR
/σ1]T ∈ RMR−1, where each

element of σ̄ is in [0,1]. Secondly, the search space for σ̄ can be further reduced by exploiting

the fact that the singular values are ordered, i.e., the i-th element of σ̄ is optimized in the

interval between 0 and the current value of the (i − 1)-th element of σ̄.

The optimization over MR−1 real-valued parameters quickly becomes cumbersome for larger

values of MR. A typical result of RR-ANOMAX is depicted in Figure 16.1. Here, we consider

uncorrelated Rayleigh fading channels with M1 =M2 = 6, MR = 3 and find the optimal singular

value profile by solving (16.26) via an exhaustive search. The red lines depict the resulting

profile of the squared singular values. We observe that for low SNRs, a low-rank solution is

obtained and for increasing SNRs, eigenmodes are activated sequentially until eventually all

singular values become equal for high SNRs. This is a very typical trend that we have found
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also in all other scenarios that have been investigated.
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Figure 16.1.: Profile of squared singular values optimized via RR-ANOMAX and WF-RR-
ANOMAX for M1 =M2 = 6, MR = 3. The original singular values of the ANOMAX solution
are shown as a reference.

Note that such a behavior is very similar to the water-filling (WF) principle that is used to

allocate power to eigenmodes in MIMO systems based on spatial multiplexing [Tel99]. It seems

therefore possible to replace the optimization procedure by a closed-form WF-based heuristic.

The resulting singular values do not perfectly match the ones obtained via RR-ANOMAX.

However, according to out experience, the cost function (16.26) is not very sensitive to small

changes in the singular values and hence the sum-rate achieved via this heuristic is always

close to RR-ANOMAX based on the exhaustive search, which we demonstrate numerically in

Section 16.5.

We provide an example for a very simple heuristic below. It has been developed by per-

forming simulations and manually imitating the trend of the optimal singular value profile

found via an exhaustive search. Consequently, it is specific to the assumptions that have been

made for the simulations. In particular, we have assumed Rayleigh fading, reciprocity, and

PT,1 = PT,2 = 1, for simplicity (see also Section 16.5).
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The resulting WF-based heuristic rule to choose σk in (16.25) is given by

σ2
k = (µ − PN,R

λk

)
+

, k = 1,2, . . . , r, (16.27)

where PN,R represents the noise power at the relay, (x)
+
= max{0, x}, and µ > 0 is the water

level chosen such that ∑r
k=1 σ

2
k = 1. The coefficients λk represents the “virtual eigenvalue”

profile which we can compute via

λk = (σ1,k + δ) ⋅ (σ2,k + δ), k = 1,2, . . . , r, (16.28)

where δ is a positive constant to assure that we obtain r non-zero eigenvalues for high SNRs

(δ = 1 is used in the simulations) and σn,k represents the k-th singular value of Hn. The

rank r is chosen heuristically as r = min{MR,min{M1,M2} + 1}. We display the resulting

singular value profile using this heuristic in Figure 16.1 with the curves labeled “WF-RR-

ANOMAX”. Comparing the profile of the singular values obtained via WF-RR-ANOMAX

and RR-ANOMAX in we conclude that they follow a similar trend. Again, note that WF-

RR-ANOMAX is just one example for a heuristic. Depending on the specific system at hand,

more sophisticated heuristics can be devised.

16.4. Rate-Maximization via Generalized Eigenvectors for

Single-Antenna Terminals (RAGES)

In this section we present the RAGES scheme which is a semi-algebraic approach to find the

sum-rate optimal relay amplification matrix for the special case of single-antenna terminals,

first proposed in [RH10b]. We show that in this case the sum-rate can be expressed as a

product of two Rayleigh quotients. This suggests that the optimal strategy is linked to gen-

eralized eigenvectors, which correspond to the local and global optima of Rayleigh quotients

(cf. Section 3.2). Based on this idea, the rate-optimal relay amplification strategy can be

found via the search over two real-valued scalar parameters. Since they both have a physical

interpretation, the search can be efficiently implemented and a simplified 1-D search can be

found which performs very close to optimal. We verify the optimality of RAGES by comparing

it to the sum-rate optimal strategy found via the Polynomial Time DC (POTDC) algorithm

which has been proposed by us in [KRVH12, KVRH12].
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16.4.1. Problem statement

Let us first find a canonical expression for the sum-rate maximization problem in the special

case of single-antenna terminals. As shown in Section 16.1.3, the SNR of each terminal can

be written as ηi = PR,i/P̃N,i, where PR,i and P̃N,i are quadratic forms in gγ
.
= vec{Gγ},

cf. Lemma 16.1.4. Since the transmitted and received signals are scalars, the maximum mutual

information for UTi simplifies into

ri =
1

2
log2(1 + ηi), (16.29)

where the factor 1/2 stems from the two time slots needed for the bidirectional transmission

of information. Inserting ηi = PR,i/P̃N,i, we can write

ri =
1

2
log2 (1 + PR,i

P̃N,i

) = 1

2
log2 ( P̃N,i + PR,i

P̃N,i

) = 1

2
log2 ( P̃R,i

P̃N,i

) , (16.30)

where we have defined P̃R,i = PR,i + P̃N,i for i = 1,2. Therefore, the sum of the maximum

mutual information of both UTs r1 + r2 (hereafter simply referred to as the sum-rate for

brevity) becomes

r1 + r2 = 1

2
log2 ( P̃R,1

P̃N,1

) + 1

2
log2 ( P̃R,2

P̃N,2

) = 1

2
log2 ( P̃R,1

P̃N,1

⋅ P̃R,2

P̃N,2

) . (16.31)

Inserting the results from Lemma 16.1.4 and performing some algebraic manipulations, we can

show the following proposition:

Proposition 16.4.1. [RH10b] The relay amplification matrix Gγ,opt which maximizes the

sum-rate shown in (16.31) subject to the power constraint PT,R ≤ P
max
T,R can be found by solving

the following equivalent optimization problem

vec{Gγ,opt} =
¿ÁÁÀ Pmax

T,R

gHopt ⋅Q ⋅ gopt ⋅ gopt where

gopt = argmax
g

gH ⋅ K̃1 ⋅ g
gH ⋅ J̃1 ⋅ g ⋅

gH ⋅ K̃2 ⋅ g
gH ⋅ J̃2 ⋅ g , (16.32)
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and the positive definite4 matrices K̃1, K̃2, J̃1, J̃2 are given by

K̃1 =K2,1 ⋅ PT,2 + J̃1, K̃2 =K1,2 ⋅ PT,1 + J̃2,

J̃1 = J1 + PN,1

Pmax
T,R

⋅Q, J̃2 = J2 + PN,2

Pmax
T,R

⋅Q.

Note that Q, J i, and Ki,j have been defined in Lemma 16.1.4.

Proof: cf. Appendix E.8.

Proposition 16.4.1 shows that finding the sum-rate optimal relay amplification matrix is

equivalent to the (unconstrained) maximization of the product of two Rayleigh quotients.

Note that [LYC08] formulates the sum-rate maximization problem in two-way relaying with a

MIMO AF relay and single-antenna terminals also in terms of a product of Rayleigh quotients.

However, the expression that [LYC08] derives is only valid for high SNRs, whereas (16.32) is

exact for arbitrary SNRs.

16.4.2. RAGES approach: Generalized Eigenvectors

To derive the link between (16.32) and generalized eigenvectors we start with the necessary

condition for optimality that the gradient of (16.32) vanishes. Therefore, if we find all vectors

g where the gradient of the cost function is zero, the global optimum must be one of them.

By using the product rule and the chain rule of differentiation we find that this condition can

be expressed as

P̃R,2

P̃N,1P̃N,2

⋅ K̃1 ⋅ g + P̃R,1

P̃N,1P̃N,2

⋅ K̃2 ⋅ g = P̃R,1P̃R,2

P̃ 2
N,1P̃N,2

⋅ J̃1 ⋅ g + P̃R,1P̃R,2

P̃N,1P̃
2
N,2

⋅ J̃2 ⋅ g (16.33)

Rearranging (16.33) we obtain

(K̃1 + ρsig ⋅ K̃2) ⋅ g = P̃R,1

P̃N,1

⋅ (J̃1 + ρnoi ⋅ J̃2) ⋅ g (16.34)

where ρsig and ρnoi are defined via

ρsig =
P̃R,1

P̃R,2

and ρnoi =
P̃N,1

P̃N,2

. (16.35)

4While positive semi-definiteness follows directly from their definition, to be positive definite we require the
noise covariance matrix at the relay RN,R to be full rank.
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From (16.34) we conclude that the optimal g must be a generalized eigenvector of the matrices(K̃1 + ρsig ⋅ K̃2) and (J̃1 + ρnoi ⋅ J̃2) and that the corresponding generalized eigenvalue is given

by
P̃R,1

P̃N,1
which is logarithmically proportional to r1, i.e., r1 =

1
2
log2

P̃R,1

P̃N,1
. However, the matrices

contain the parameters ρsig and ρnoi which also depend on g and are hence not known in

advance. Therefore, we still need to optimize over these two parameters. Compared to the

original problem of finding a complex-valued MR×MR matrix, optimizing over two real-valued

scalar parameters is already significantly simpler. The following subsections show how to

simplify this 2-D search even further.

Note that [LYC08] also mentions the link to generalized eigenvectors for their approximate

high-SNR expression for the sum-rate. However, [LYC08] proposes to find the generalized

eigenvector by a General Power Iterative (GPI) algorithm, which may require many iterations

to converge and does not give any guarantee for optimality. In contrast, the 2-D RAGES

solution is sum-rate optimal and can be efficiently implemented, as discussed below.

16.4.3. Bounds on the parameters

Since both parameters ρsig and ρnoi have a physical interpretation we can easily find lower and

upper bounds for them in order to limit the search space that has to be tested. For instance,

ρnoi can be expanded into

ρnoi =
P̃N,1

P̃N,2

=
gHJ1g + PN,1

gHJ2g + PN,2

. (16.36)

The quadratic forms are bounded by using the fact that for any Hermitian matrix R we

have [Str93]

λmin(R) ⋅ ∥g∥22 ≤ gH ⋅R ⋅ g ≤ λmax(R) ⋅ ∥g∥22 (16.37)

where λmin and λmax are the smallest and the largest eigenvalues of R, respectively. From the

definition of J i in Lemma 16.1.4 it follows that λmin(J1) = 0 and λmax(J1) = λmax(RN,R)⋅α(b)2i ,

where α
(b)
i is a short hand notation for ∥h(b)i ∥2. Furthermore, we have λmax(RN,R) ≤ PN,R ⋅MR

in general and for white noise at the relay the tighter condition λmax(RN,R) = PN,R. These

relations can be used to bound (16.36): We find an upper bound by upper-bounding the

enumerator and lower-bounding the denominator. The lower bound is found by lower-bounding

the enumerator and upper-bounding the denominator. This yields

ρnoi ≤
PN,R

PN,2

⋅MR ⋅ α(b)21 ⋅ ξ2g + PN,1

PN,2

(16.38)
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ρnoi ≥ (PN,R

PN,1

⋅MR ⋅ α(b)22 ⋅ ξ2g + PN,2

PN,1

)−1 (16.39)

where ξ2g = ∥g∥22. Moreover, MR can be dropped if the noise at the relay is white, i.e., in this

case the bounds tighten to PN,1/(PN,R ⋅ α(b)22 ⋅ ξ2g + PN,2) ≤ ρnoi ≤ (PN,R ⋅ α(b)21 ⋅ ξ2g + PN,1)/PN,2.

However, we still need an upper bound for ξ2g . Due to the relay power constraint we have

gH ⋅Q ⋅ g = Pmax
T,R . From this condition we can derive the bound ξ2g ≤ P

max
T,R /λmin(Q). However,

this is a very loose bound since for white noise at the relay we have λmin(Q) = PN,R and

for arbitrary relay noise covariance matrices no lower bound exists (the infimum over λmin is

zero). This bound is so loose because it is extremely pessimistic: it measures the norm of g

in the case where only noise is amplified and no power is put on the eigenvalues related to

the signals of interest. However, such a case is practically irrelevant since it corresponds to

a sum-rate equal to zero. The optimal strategy at the relay is much more likely to focus on

the desired signal component. We therefore propose to replace ξ2g in (16.38) and (16.39) by5

Pmax
T,R /λ2(RR), where λ2(RR) is the second-largest eigenvalue of RR, which is chosen since the

desired signal component in RR is of rank two.

In a similar manner, ρsig can be bounded. In this case, enumerator and denominator have the

additional terms PT,2 ⋅ gHK2,1g and PT,1 ⋅ gHK1,2g, respectively. A pessimistic (loose) bound

is obtained by bounding these two terms independently, i.e., 0 ≤ gHK2,1g ≤ ξ
2
gα
(f)2
2 α

(b)2
1 and

0 ≤ gHK1,2g ≤ ξ
2
gα
(f)2
1 α

(b)2
2 . This yields

ρsig ≤
PT,2

PN,2

α
(f)2
2 α

(b)2
1 ξ2g + PN,R

PN,2

MRα
(b)2
1 ξ2g + PN,1

PN,2

(16.40)

ρsig ≥ (PT,1

PN,1

α
(f)2
1 α

(b)2
2 ξ2g + PN,R

PN,1

MRα
(b)2
2 ξ2g + PN,2

PN,1

)−1 . (16.41)

Again, these bounds are pessimistic since they assume that there exists an optimal relay

strategy for which PR,1 = PT,2 ⋅α(f)22 ⋅α(b)21 ⋅ ξ2g but PR,2 = 0, i.e., the rate of the second terminal

is equal to zero. However, it is typically sum-rate optimal to have significantly more balanced

rates between the two users. In fact, for a “symmetric” scenario where PT,1 = PT,2, h
(f)
i = h

(b)
i

for i = 1,2, and α
(f)
1 = α

(f)
2 we always have PR,1 = PR,2 at the optimal point. Therefore,

these bounds can be further tightened if a priori knowledge about the scenario is available.

For instance, if we know that the received powers differ by no more than a factor of r, i.e.,

PR,1/r ≤ PR,2 ≤ PR,1 ⋅ r, then the lower bounds for gHKi,jg can be improved according to

5We have observed in all our simulations that this value poses indeed an upper bound on the norm of the
optimal solution gopt, however, no analytical proof of this fact could be found.
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Figure 16.2.: Impact of ρsig and ρnoi on the sum-rate for MR = 6, PT,1 = PT,2 = Pmax
T,R = 1,

PN,1 = PN,2 = PN,R = 0.1.
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16.4.4. Efficient 2-D and 1-D search

Once the search space for ρsig and ρnoi has been fixed we need to find the maximum via a

2-D search. In general, a 2-D exhaustive search can be computationally demanding. However,

as we show in the sequel, for the problem at hand this search can be implemented efficiently.

These efficient implementations are heuristic since they rely on properties of the cost function

that are apparent by visual inspection but due to the complex dependency of the sum-rate on

the scalar parameters they cannot be proven analytically. However, as we show in simulations

the resulting algorithm performs well in practice.

To this end, Figure 16.2a demonstrates a typical example of the sum-rate r1 + r2 as a

function of ρsig and ρnoi. For this example we have chosen MR = 6, PT,1 = PT,2 = P
max
T,R = 1,

PN,1 = PN,2 = PN,R = 0.1 and we have drawn the channel vectors from an uncorrelated Rayleigh

fading distribution assuming reciprocity. By visual inspection this sample cost function shows

two interesting properties. Firstly, it is a quasi-convex function in ρnoi and ρsig (i.e., it does

not have any local maxima [BV04]) which allows for efficient (quasi-convex) optimization tools

for finding its maximum. Albeit this property is only demonstrated for one example it was

always present in our numerical evaluations even when largely varying all system parameters.
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Figure 16.3.: Cost function Asig(ρsig, ρnoi) using the same dataset as in Figure 16.2a. The red
line indicates the points where Asig(ρsig, ρnoi) = 0.

Secondly, for every value of ρnoi the corresponding maximization over ρsig yields one maximal

value which depends on ρnoi only very weakly. This is illustrated by Figure 16.2b where we

display the relative change of our cost function r1 + r2 for different choices of ρnoi, each time

optimizing it over ρsig. The displayed values represent the relative decrease of the cost function

compared to the global optimum, i.e., for the worst choice of ρnoi, the achieved sum-rate is

about 2 ⋅ 10−5 = 0.002 % lower than for the best choice of ρnoi. Consequently, we propose to

replace the 2-D search over ρsig and ρnoi by a 1-D search over ρsig for one fixed value of ρnoi

(e.g., the geometric mean of the upper and the lower bound).

Instead of performing the search directly over the original cost function r1 + r2 we can find

an even simpler cost function by using the physical meaning of our two search parameters. To

this end, let

ρ̂sig(g) .
=
gH ⋅ K̃1 ⋅ g
gH ⋅ K̃2 ⋅ g (16.42)

where g is the relay weight vector at the current search point (ρsig, ρnoi). Then we know that

in the optimal point gopt we have ρ̂sig(gopt) = ρsig. This can be used to construct a new

cost function Asig(ρsig, ρnoi) .
= ρ̂sig(g) − ρsig, where g is the dominant eigenvector of (16.34)

at the current search point (ρsig, ρnoi). Using the same data set as before we display the

corresponding shape of Asig(ρsig, ρnoi) in Figure 16.3. The red line indicates the set of points

where Asig(ρsig, ρnoi) = 0. We observe that for every value of ρnoi, Asig(ρsig, ρnoi) is a monotonic

function in ρsig. Therefore, we can use the bisection method to find the zero crossing in ρsig
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which coincides with the sum-rate-optimal ρsig for the given ρnoi.

In the special case where the noise at the relay is white, i.e., RN,R = PN,R ⋅ IMR
, and the

channels are reciprocal, the complexity can be further reduced. In this case, it is easy to show

that the optimal matrix G has the form [ZLCC09]

G = [h1 h2]∗ ⋅B ⋅ [h1 h2]H , (16.43)

where B ∈ C
2×2. Translated to the RAGES approach it means that instead of searching

over M2
R-dimensional vectors g, we can reduce the search to the set of 4-dimensional vectors

b = vec{B}. The details of this approach are shown in Appendix E.9.

16.4.5. Summary

We conclude that the RAGES approach simplifies the optimization over a complex-valued

MR ×MR matrix into the optimization over two real-valued parameters which both have a

physical interpretation. Even more so, the 2-D search can be simplified into a 1-D search by

fixing one of the parameters. The loss incurred to this step is typically small, in the example

provided above it was only 0.002 % but even varying the system parameters largely and using

many random trials we never found a relative difference higher than a few percent.

Moreover, the 1-D search can be efficiently implemented by exploiting the quasi-convexity

of r1 + r2 (e.g., using a branch and bound algorithm) or the monotonicity of Asig (e.g., using

the bisection method). Again, these properties are only demonstrated by examples but we

found in all our simulations that the resulting algorithm yields a sum-rate very close to the

optimum found via exhaustive search. This comparison is further illustrated in Section 16.5

with numerical simulations.

16.5. Simulation Results

In this section we present numerical results obtained via Monte Carlo simulations to evaluate

the performance of the proposed schemes. For all simulation results we assume that reciprocity

is valid, i.e., H
(f)
i =H

(b)T
i =H i for i = 1,2. The channel matrices H i are drawn according to

a correlated Rayleigh fading distribution with Kronecker correlation. Therefore, the elements

of H i are zero mean circularly symmetric complex Gaussian random variables with variance

denoted by α2
i for i = 1,2. Moreover, the one-sided covariance matrices of H i are given by

1

Mi

⋅E{H i ⋅HH
i } = α2

i ⋅RR ∈ C
MR×MR , i = 1,2 (16.44)

245



16. Relay amplification matrix design

1

MR

⋅E{HH
i ⋅H i} = α2

i ⋅Ri ∈ C
Mi×Mi , i = 1,2, (16.45)

where Ri and RR represent the normalized spatial covariance matrices at terminal i and at

the relay, respectively. They are constructed such that their main diagonal elements are equal

to one and all off-diagonal elements have magnitude ρi and ρR, respectively. If not stated

otherwise, the variances are set to α2
1 = α

2
2 = 1 and the transmit powers are set to PT,1 = PT,2 =

PT,R = 1. Moreover, the noise powers are assumed to be equal, i.e., PN,1 = PN,2 = PN,R = σ
2
n.

The SNR is then defined as SNR = σ−2n .

Figures 16.4a and 16.4b compare the link performance of the ANOMAX scheme introduced

in Section 16.3 with the Dual Channel Matching (DCM) [VH11] as well as the ZF and MMSE

schemes from [UK08]. Moreover, the curve labeled “DFT” corresponds to the case where the

relay uses a scaled MR×MR DFT matrix (cf. Appendix A.2)6. The terminals transmit a single

data stream over the effective channel matrices H
(e)
i,j via dominant eigenmode transmission

(DET). As a modulation scheme, uncoded QPSK is used. For Figure 16.4a, the terminals are

equipped with M1 =M2 = 4 antennas and the relay used MR = 2 antennas. On the other hand,

for Figure 16.4b, the antenna configuration is changed toM1 =M2 = 2 andMR = 5, respectively.

The solid curves represent the case where the channels are perfectly known, whereas for the

dashed curves, the channels are estimated using the SLS-based iterative refinement for TENCE

(introduced in Section 15.4) and NP,D = 2 dedicated pilots (cf. Section 15.5.4). We clearly see

that ANOMAX outperforms all other schemes for perfect as well as for imperfect CSI.

Figures 16.5a and 16.5b depict the maximum mutual information defined in (16.3) for M1 =

M2 = 2 and MR = 4. No spatial correlation at the UTs is assumed, i.e., the correlation

coefficients at the UTs are set to ρ1 = ρ2 = 0. For Figure 16.5a, we also set ρR = 0, whereas

for Figure 16.5b we introduce spatial correlation at the relay by setting ρR = 0.9. As an upper

bound for the maximum mutual information we depict the optimal relay amplification matrix

obtained via a gradient search, as described in [ZRH12a]. This iterative algorithm finds the

optimal relay strategy, however, it is impractical since the number of required gradient steps

may be very large (in the order of millions), leading to a very high computational complexity.

We notice that while ANOMAX performs well for low SNRs, it fails to provide the full spatial

multiplexing gain for high SNRs, since it favors low-rank solutions. This effect is mitigated

by the RR-ANOMAX scheme introduced in Section 16.3.4, which restores the required rank

for high SNRs and thereby achieves a performance close to the upper bound. The WF-based

heuristic for RR-ANOMAX performs nearly as good. As evident from Figure 16.5b, the MMSE

6Note that the performance of using the scaled DFT matrix is identical to using any other fixed orthogonal
matrix, e.g., a scaled identity matrix.
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and ZF transceivers are sensitive to spatial correlation at the relay, since they spatially cancel

the self-interference.

In Figure 16.6 we investigate the “near-far” robustness of the different relay amplification

strategies by varying the path gain of UT2 (α2) for fixed path gain of UT1 (α1 = 1). Values

of α2 less than one correspond to a scenario where UT2 is farther from the relay than UT1.

However, since the terminals’ signals go through both channels H1 and H2, both terminals

are affected in a similar manner. RR-ANOMAX and WF-RR-ANOMAX perform equally well

with an almost constant gap to the upper bound.

Figure 16.7 demonstrates the effect of increasing the number of antennas at the relay. We

consider uncorrelated Rayleigh fading with M1 =M2 = 6 antennas at the UTs. RR-ANOMAX

is displayed only for MR = 2,3,4, since the exhaustive search needed for RR-ANOMAX be-

comes computationally prohibitive for MR > 4. We observe that the sum-rate for ANOMAX

increases only very little with increasing MR which is due to the fact that ANOMAX tends to

concentrate the energy on the dominant eigenmode of the channels. The algebraically simple

WF-RR-ANOMAX technique is again very close to the upper bound.

The final set of simulation results shows the performance of the RAGES scheme for the

special case of single-antenna terminals introduced in Section 16.4. We compare the sum-rate

optimal semi-algebraic 2-D RAGES strategy with the simplified 1-D RAGES strategy. For

reference, we also show the sum-rate optimal Polynmial Time DC (POTDC) based approach

from [KVRH12, KRVH12] as well as the ANOMAX scheme from Section 16.3.1, the ZF and

MMSE transceivers from [UK08], and the scaled DFT matrix. In Figure 16.8, we set MR = 3,

ρR = 0 and vary the SNR from 5 to 25 dB. On the other hand, for Figure 16.9, we fix the SNR

to 0 dB and simulate a “near-far” effect by moving the relay. The “normalized relay position

d” we show represents the distance between the relay and UT1 divided by the distance between

UT2 and UT1, assuming all three are located on one line. Therefore, d = 0.5 corresponds to

the case where the relay is placed in the middle, whereas d > 0.5 means it is closer to UT2

than to UT1. We assume a path loss exponent of n = 3, i.e., the channel variances are chosen

such that α2
1/α2

2 = (1− d)3/d3. Both simulation results confirm that 2-D RAGES and POTDC

coincide, which is expected since they both yield the sum-rate optimal strategy in this setting.

Moreover, 1-D RAGES performs as good as 2-D RAGES despite being computationally much

less demanding. The fully algebraic ANOMAX scheme is also quite close to the maximum

achievable sum-rate.
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16.6. Summary

In this chapter of the thesis, we have discussed the choice of the relay amplification matrix for

two-way relaying with a MIMO AF relay. After cancellation of the self-interference, the system

is decomposed into two parallel single-user MIMO systems. Their effective channel matrices as

well as their noise covariance matrices depend on the choice of the relay amplification matrix.

Therefore, finding an optimal relaying strategy with respect to a suitable performance metric,

e.g., sum-rate or bit error rate is a mathematically challenging task.

For the general MIMO case, we have introduced the Algebraic NormMaximizing (ANOMAX)

transmit strategy [RH09a] ANOMAX targets the maximization of the weighted sum of the

Frobenius norms of the effective channel matrices. The resulting solution for the relay am-

plification matrix G is very simple to compute in closed-form. It tends to focus the energy

in the effective channels on their dominant eigenmodes which results in a considerable SNR

improvement for single-stream transmission. This results in a very good BER performance,

providing reliable communication links and high diversity orders.

However, if we look at the maximum mutual information for higher Signal to Noise Ratios,

the drawback of this approach becomes obvious: the low-rank nature of the effective channels

is not suitable to support multiplexing of several data streams, resulting in a low spatial

multiplexing gain. Therefore, for scenarios where the design target is to maximize the data

rate, we provide the RR-ANOMAX algorithm [RH10a] as a simple extension to ANOMAX.

By adjusting the singular value profile dependent on the current SNR, we can restore the

required rank for high SNRs, yielding a performance that inherits the benefits of ANOMAX

for low SNRs and still provides the full spatial multiplexing gain of min{M1,M2,MR} for high
SNRs. This adaptation can be performed in a heuristic manner. We provide an example for a

heuristic inspired by the Water Filling (WF) principle [Tel99]. Simulations demonstrate that

the heuristic WF-RR-ANOMAX performs close to the upper bound while being very simple to

compute. These simulations also show that WF-RR-ANOMAX performs many existing relay

amplification strategies, such as the Dual Channel Matching (DCM) or the ZF and the MMSE

transceivers.

As a third contribution, we consider the special case of single-antenna terminals. In this

case, the sum-rate of the system can be explicitly expressed as a product of Rayleigh quotients.

We show that such an optimization problem can be solved via Generalized Eigenvectors via

the RAGES (Rate Maximization via Generalized Eigenvectors for Single-Antenna terminals)

scheme. RAGES simplifies the search for the matrix G to a search over two real-valued

scalar parameters. Since both have a physical interpretation, bounds for the search interval
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are available and the search can be efficiently implemented. We show that a simplified 1-D

search where one of the two parameters is ignored performs just as well as the 2-D search,

resulting in a very low computational complexity. Moreover, for the special case of reciprocal

channels and white noise at the relay, the complexity can be further reduced by projecting

the M2
R ×M2

R problem onto an equivalent 2 × 2 problem, rendering the search for the correct

generalized eigenvector independent of MR. Simulation results demonstrate that 2-D RAGES

is in fact sum-rate optimal by comparing it to the Polynomial Time DC (POTDC) algorithm

introduced by us in [KRVH12, KVRH12]. POTDC is a polynomial-time algorithm for solving

a class of Difference of Convex functions (DC) problems that are in general NP-hard. As

we show in [KRVH12, KVRH12], the maximization of the product of two Rayleigh quotients

can be reformulated as DC problem where the cost function is a difference of logarithmic

functions. POTDC solves this problem by approximating the log-function locally by a linear

function in an iterative way. Thus, it solves a sequence of relaxed problems which have the

same complexity as a semi-definite programming (SDP) problem. As we show in [KRVH12],

POTDC is guaranteed to converge and its solution is guaranteed to be at least locally optimal,

with strong numerical evidence for global optimality (though this has not been proven yet).
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(a) M2 =M2 = 4, MR = 2
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(b) M1 =M2 = 2, MR = 5

Figure 16.4.: Bit error rate using dominant eigenmode transmission (DET) and uncoded QPSK
for correlated Rayleigh fading channels (ρ1 = ρ2 = 0.9, ρR = 0) using various relaying strate-
gies. Solid curves represent perfect CSI (pCSI), dashed lines imperfect CSI (iCSI) where the
channels are estimated using the SLS-based iterative refinement for TENCE and 2 dedicated
pilots. Left: M2 =M2 = 4, MR = 2. Right: M1 =M2 = 2, MR = 5.
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(a) No spatial correlation

−5 0 5 10 15 20 25 30 35
0

5

10

15

20

SNR [dB]

M
ut

ua
l I

nf
or

m
at

io
n

 

 

Upper Bound
RR−ANOMAX
WF−RR−ANOMAX
MMSE
ZF
DCM
ANOMAX
DFT

(b) Spatial correlation at the relay ρR = 0.9

Figure 16.5.: Maximum mutual information vs. the SNR for M1 = M2 = 2, MR = 4 using
Rayleigh fading channels. Left: no spatial correlation ρ1 = ρ2 = ρR = 0. Right: spatial
correlation at the relay ρ1 = ρ2 = 0, ρR = 0.9.
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Figure 16.6.: Maximum mutual information vs. the path gain of UT2 for α1 = 1, M1 = M2 =

MR = 3, an SNR of 20 dB, and ρ1 = ρ2 = ρR = 0.
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Figure 16.7.: Maximum mutual information vs. the number of antennas at the relay MR for
M1 =M2 = 6, an SNR of 20 dB, and ρ1 = ρ2 = ρR = 0.
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Figure 16.8.: Maximum mutual information vs. the path gain of UT2 for α1 = 1, M1 = M2 =

MR = 3, an SNR of 20 dB, and ρ1 = ρ2 = ρR = 0.
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Figure 16.9.: Maximum mutual information vs. the number of antennas at the relay MR for
M1 =M2 = 6, an SNR of 20 dB, and ρ1 = ρ2 = ρR = 0.
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17. Summary of two-way relaying

17.1. Summary of contributions

This part of the thesis discusses two-way relaying with a MIMO Amplify and Forward relay

station. The two main aspects that are discussed represent the channel estimation problem as

well as the choice of the relay amplification matrix. Our main novel contributions are:

• The algebraic Tensor-Based Channel Estimation (TENCE) algorithm [RH10c, RH09e],

which provides both terminals with knowledge of the channel matrices between the ter-

minals and the relay station. Based on this knowledge, all the effective channel matrices

can be constructed, i.e., the self-interference channel (to subtract the own “echo” signal),

the forward channel to the other UT (for transmit precoding), and the backward chan-

nel from the other UT (for spatial decoding). Note that TENCE applies to arbitrary

antenna configurations and resolves all relevant scaling ambiguities.

• A Structured-Least Squares (SLS)-based iterative refinement for TENCE [RH10c, RH09d]

which improves the estimation accuracy further by performing only 1-4 refinement steps.

Such an iterative process is necessary since finding the channel matrices requires solving

a quadratic Least Squares (LS) problem for which no closed-form LS-optimal solution

exists.

• Design rules and recommendations for the training sequences to be used during the

training phase for TENCE [RH10c].

• The Algebraic Norm Maximizing (ANOMAX) [RH09a] transmit strategy for choosing

the relay amplification matrix. ANOMAX focuses on maximizing the Frobenius norms

of the effective channel matrices which results in a strong concentration of the energy

onto the dominant eigenmodes of the channels and thus a very good BER performance

and a high diversity order, outperforming existing schemes [UK08, VH11]. Section 16.3.1

extends [RH09a] by an enhanced discussion where we prove that ANOMAX and DCM

are identical for single-antenna terminals and that ANOMAX is rank-one if the weighting

coefficient is set to zero or to one, see Appendices E.6 and E.7.
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• The Rank-Restored ANOMAX (RR-ANOMAX) [RH10a] scheme which inherits the good

performance of ANOMAX for low SNRs but fixes the problem that ANOMAX cannot

provide the full spatial multiplexing gain for high SNRs (due to the low-rank nature

of the resulting channel matrices) by adjusting the singular value profile of ANOMAX,

dependent on the SNR. Such an adaptation can be performed in a heuristic manner,

for instance, by a heuristic inspired by the Water Filling (WF) principle. As we show,

the resulting WF-RR-ANOMAX scheme outperforms many other algebraic approaches

[UK08, VH11] and yields a sum-rate close to the upper bound.

• The Rate Maximization via Generalized Eigenvectors for Single-Antenna terminals (RAGES)

[RH10b]. RAGES represents a semi-algebraic scheme which provides the sum-rate op-

timal strategy in the special case of single-antenna terminals. As we demonstrate, the

sum-rate in such a case can be expressed as the product of two Rayleigh quotients. The

optimal relaying strategy is then found via a Generalized Eigenvector of two matrices

that depend on two unknown real-valued scalar quantities. Since both scalar parameters

have a physical interpretation, the search for them can be efficiently implemented. As we

demonstrate, a simplified 1-D search where one of the two parameters is ignored provides

a sum-rate that is very close to the optimum found via a 2-D search. Simulations verify

that 2-D RAGES is in fact optimal by comparing it to the sum-rate optimal Polyno-

mial Time DC (POTDC) algorithm proposed by us in [KVRH12, KRVH12] while being

significantly simpler than existing schemes based on numerical optimization [ZLCC09].

Section 16.4 extends [RH10b] and [KRVH12] by introducing a low-complexity version for

the special case of white noise at the relay, see Appendix E.9.

More related contributions that are not explicitly discussed in this thesis but worth men-

tioning are:

• The extension to multiple user pairs, for instance in the context of voluntary inter-

operator physical resource sharing (SAPHYRE1) [JBF+10], giving rise to the projection

based separation of multiple operators (ProBaSeMO) [ZRH12a, RZHJ10]. This idea

is also applicable to the communication between a base station and several terminals

via one relay station [ZRH11]. For the special case of single-antenna terminals and a

network of single-antenna relays, several optimization-based approaches are discussed

in [ZRH+12b]. Likewise, the sum-rate maximization with a MIMO AF relay and several

pairs of single-antenna terminals is discussed in [ZBR+12].

1SAPHYRE is an European research project, partly funded by the European Union under its FP7 ICT Objective
1.1 - The Network of the Future (FP7-ICT-248001), http://saphyre.eu.
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• The adaptation of ANOMAX and RR-ANOMAX to the (one-way) interference channel

with a MIMO AF relay is shown in [LRH11a, LRH11b, LZR+11].

• Near-Far Robustness and optimal power allocation for two-way relaying with a MIMO

AF relay is discussed in [RH09c, RJH10].

17.2. Future work

The results that have been achieved so far open up some exciting directions for future research.

A major open direction is the analytical performance assessment of the algebraic schemes

that have been proposed so far. In terms of the channel estimation schemes, this refers to

deriving the MSE for TENCE and its SLS-based iterative refinement (possibly following some

of the ideas that have been used to derive the performance of SLS-based ESPRIT in Sec-

tion 12.4.6) and to compare it to the corresponding Cramér-Rao Bound in order to judge its

efficiency.

For the relay amplification matrix designs an analytical characterization of the diversity

order for particular fading distributions (e.g., Rayleigh fading) or the achievable sum-rate

would be desirable. The same is true for the multi-pair extensions provided by the ProBaSeMO

framework, where additionally the question of inter-pair fairness becomes relevant.

Note that a stronger analytical reasoning could lead to new ideas for a more rigorous Rank-

Restored version of ANOMAX, which is so far only based on a heuristic adaptation of the

singular values. We have seen that in some cases, there is still a gap to the upper bound in

terms of the sum-rate, offering the potential to improve RR-ANOMAX further.

Another aspect that is still open is a proper extension of the algebraic schemes to the case

of a network of MIMO relays. This becomes difficult mainly due to two facts: Firstly, each

relay may have its own power constraint, which is difficult to incorporate. Secondly, each relay

should only use the knowledge of its own channels to the UTs and not require (instantaneous)

knowledge of the channels between the other relay stations and the UTs, since this would

require significant signaling overhead. Of course, the potential improvement of having at least

coarse knowledge (say, second-order statistics) of the other channels becomes interesting as

well in order to judge whether a low-rate communication between relay stations could possibly

pay off. Note that DCM provides a benchmark for this case since it is easily applied to relay

networks and only relies on local channel knowledge [VH11].

It would also be desirable to compare our system assumptions to other alternatives in order

to judge its practical significance in a broader context. Firstly, this includes a fair comparison

of the AF relay we assumed to different relay operation modes (e.g., DF, EF, or CF) in terms of
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the achievable system performance (bit error rate, system sum rate, latency) and the required

complexity (digital signal processing, hardware). Moreover, we have assumed that the UTs

compute their precoding and decoding matrices from the effective channel matrices. This

should be compared to the alternative approach where the UTs use their own channel matrix

to the relay station for this task [XH10, LCSK10, JS10b, WT12].

Another aspect that has so far not been addressed is the application of the concepts to

real-world conditions. While channel estimation errors have already been introduced, we are

facing many more limitations when implementing the schemes in practice. For instance, per-

fect synchronization cannot be achieved and reciprocity (which is assumed for TENCE) will

never exactly hold. Moreover, frequency-selective fading introduces additional challenges for

which we need to introduce appropriate measures, e.g., chunk-wise adaptive precoding via

OFDM (instead of performing the adaptation per subcarrier [OORW08, RFH08]). Further-

more, in presence of time-varying channels, the potential of deriving an adaptive channel

tracking scheme based on TENCE could be investigated.

For the applicability to practical networks, it is also desirable to take Quality of Service

(QoS) constraints into account, e.g., target bit error rates, maximum delays, rate requirements

and so on. In light of the increasing share of battery-powered mobile devices and the call for

green communications to reduce the world-wide carbon dioxide emissions, finding particularly

energy efficient strategies becomes increasingly relevant. Our initial investigations on power

allocation to achieve predefined SNR targets from [RH09c] can still be extended. We have

only considered the minimization of the relay’s transmit power for fixed powers at the UTs in

[RH09c]. The minimization of the UTs transmit powers or the total network power would be

a next step.

257



Part V.

Conclusions and Outlook

258



18. Conclusions

In this thesis, we investigate advanced algebraic concepts for finding efficient solutions to

various applications of multi-channel digital signal processing. The main goal is to contribute

methodically, i.e., discuss how such solutions can be found in general and demonstrate this

approach with respect to different application areas. As we show, algebraic approaches can

yield several benefits, e.g., a flexible control over the complexity-performance trade-off, a

profound theoretical assessment of the achievable performance, or simply close-to-optimal low-

complexity solutions.

In the first part of the thesis we summarize the tools for manipulating algebraic expressions

that have been used throughout the thesis. We begin by a systematic treatment of various types

of linear and quadratic forms and emphasize on the fact that they can be reduced into simple

“canonical” versions. These often allow for direct solutions, e.g., Least Squares (LS)-optimal

estimates of parameters in linear forms or (generalized) eigenvectors maximizing (ratios of)

quadratic forms. We also discuss the LS-optimal factorization of Kronecker and Khatri-Rao

products both for the case where one factor is known and the case where both factors are

unknown. Additionally, we introduce the elementary concepts of multilinear algebra and

discuss two of the most frequently used tensor decompositions, the Higher Order Singular

Value Decomposition (HOSVD) and the Canonical Polyadic (CP) decomposition.

The second part of the thesis is devoted to the Semi-algebraic framework for approximate

CP decomposition via Simultaneous matrix diagonalization (SECSI), first proposed by us

in [RH08b, RH08a]. SECSI extends the known link between the CP decomposition and Si-

multaneous Matrix Diagonalizations (SMDs) [dL06] in a number of aspects. Firstly, we show

that not only one but many SMDs can be constructed due to the symmetry of the problem

and establish the full system of SMDs for the 3-D and the general R-D case. Secondly, we

demonstrate that from each SMD, estimates for all loading matrices can be found. Thereby, we

obtain several candidate solutions from which we select one final estimate in a subsequent step.

Thirdly, we discuss that based on the choice which SMDs to solve and how to select the final

estimate, many different algorithms can be defined within the framework, which allows us to

flexibly control the performance-complexity trade-off. We propose several heuristic algorithms

and compare their performance in simulations. We compare the achieved accuracy as well as

the required run-time to state-of-the-art CP algorithms which shows the enhanced robustness

and flexibility of the novel SECSI framework. It should be noted that the SECSI framework
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has already successfully been applied in several practical applications related to biomedical

signal processing, i.e., to identify space-time-frequency components in event-related Electroen-

cephalography (EEG) data [JRW+08, WRH+09], for a temporally resolved component analysis

of dynamic EEG sources [WJG+10b, WJR+10], and for the decomposition of a space–time–

wave-vector tensor obtained by a local spatial 3-D Fourier transform of the EEG measurement

data [BCA+10, BCA+12]. Moreover, SECSI has been applied for model order selection in mul-

tidimensional data [DRWH10] and for parameter estimation from multidimensional signals

with colored noise and imperfect antenna arrays [DSR+10].

In the third part of the thesis we study subspace-based multidimensional high-resolution pa-

rameter estimation. We introduce the concept of sampling multidimensional signals on separa-

ble R-dimensional grids. For data sampled in this manner we show that tensor algebra provides

a convenient and natural description of the inherent multidimensional structure. Based on this

description we introduce the tensor-based signal subspace estimate [RHD06, HRD08] which

takes advantage of the structure and can be used to enhance arbitrary subspace-based multi-

dimensional parameter estimation algorithms. We also prove a simple algebraic link between

the matrix-based and the tensor-based subspace estimate (first shown by us for the special

case R = 2 in [RBHW09]), showing that the latter can be computed by applying a structured

projection to the former. We then introduce various enhancements to the family of Estima-

tion of Signal Parameters via Rotational Invariance Techniques (ESPRIT)-type algorithms

which exploit the multidimensionality of the data (in form of the Tensor-ESPRIT-type algo-

rithms [HRD08]), the non-circularity of the sources’ amplitudes (in form of the NC ESPRIT-

type algorithms [HR04]) or both jointly (in form of the NC Tensor-ESPRIT-type algorithms

[RH09b]). For the tensor-case we additionally discuss the Tensor-Structure Structured Least

Squares (TS-SLS) algorithm [RH07b], a tensor-based approach to solve the overdetermined

shift invariance equations in ESPRIT. We demonstrate numerically that these modifications

to ESPRIT yield an enhanced estimation accuracy by exploiting specific patterns in the data.

A particularly important aspect of the third part is the introduction of a generic framework

for the analytical performance assessment of ESPRIT-type algorithms. We begin by extending

an existing first-order perturbation expansion for the SVD-based subspace estimate [LLV93] to

the HOSVD-based subspace estimate [RBHW09]. We then show how to obtain corresponding

expansions for arbitrary ESPRIT-type algorithms based on LS [RBH10] and (1-D) Structured

Least Squares (SLS) [RH11]. Since these are explicit, no assumptions about the statistics of

the perturbations is required. We also provide closed-form expressions for the mean square

estimation error (MSE) for the case of circularly symmetric white noise. Note that we do not

need the noise to be Gaussian distributed. For the special case of a single source and uniform
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arrays, we simplify the MSEs into tractable closed-form expressions which allow insights into

the efficiency of various ESPRIT-type algorithms. As we show, all ESPRIT-type algorithms

based on LS have the same MSE for a single source and the asymptotic efficiency decreases with

increasing array size. However, already one iteration of SLS reduces the MSE significantly,

achieving an asymptotic efficiency very close to one.

The final part of the thesis discusses two-way relaying [RW05] with MIMO Amplify and For-

ward (AF) relays. We introduce the algebraic Tensor-Based Channel Estimation (TENCE)

scheme [RH09e, RH10c] and its SLS-based iterative refinement [RH09d, RH10c] in order to

obtain the required channel knowledge in such a system. As a side result, we find design rules

and recommendations on the choice of the pilot sequences during the training phase. We then

focus on the design of the relay amplification matrix in such a system. We first introduce

the Algebraic Norm Maximizing (ANOMAX) transmit strategy [RH09a] that maximizes the

Frobenius norm of the effective channel matrices, which yields a strong concentration of the

energy onto the dominant eigenmode of these channels. This results in a very good Bit Error

Rate (BER) performance, providing a high diversity order and hence a reliable communica-

tion link. However, for the case where our goal is to spatially multiplex several data streams,

such a low-rank structure is undesirable since it fails to provide the full spatial multiplexing

gain of min{M1,M2,MR}. To address this issue we propose a simple algebraic modification

of ANOMAX given by the Rank Restored ANOMAX (RR-ANOMAX) scheme [RH10a].

RR-ANOMAX adjusts the singular value profile of ANOMAX as a function of the Signal to

Noise Ratio (SNR), restoring the required rank for high SNRs. As we demonstrate, already a

very simple heuristic based on the Water Filling (WF) principle [Tel99] achieves a very good

sum-rate close to the upper bound. Finally, for the special case of single-antenna terminals

we propose the semi-algebraic sum-rate optimal Rate maximization via Generalized Eigen-

vectors for Single antenna terminals (RAGES) scheme [KRVH12, RH10b]. RAGES finds the

optimal relay amplification matrix by searching generalized eigenvectors over a field described

by two scalar real-valued parameters. Since both parameters have a physical meaning, the

search can be implemented very efficiently and a simplified 1-D search performs very close

to the optimal 2-D scheme. We verify the optimality by comparing RAGES to the sum-rate

optimal convex optimization based Polynomial-Time DC (POTDC) algorithm [KRVH12].

Overall, the thesis demonstrates that many practical problems can efficiently be addressed

in an algebraic or a semi-algebraic manner. We benefit from such solutions in multiple ways,

e.g., a lower complexity (as for the algebraic approaches presented in the context of two-way

relaying), enhanced flexibility (as for the SECSI framework), or the possibility to develop

profound analytical results on their performance (as for the ESPRIT-type algorithms).
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19. Future work

The thesis has addressed a broad spectrum of topics and, thereby, opened up many exciting

directions for future research.

Beginning with the SECSI framework, its most serious shortcoming is the lack of analytical

results for the achievable accuracy. A more profound theoretical understanding of the ultimate

limit of Simultaneous Matrix Diagonalizations in general or, alternatively, the performance of

specific algorithms [FG06, LA11] would allow to base the design of specific algorithms within

the SECSI framework on more solid grounds. Ultimately, more sophisticated means of choos-

ing which SMDs to solve and how to select the final estimate could lead to more robust and

more efficient solutions. A less far-fetched goal is to alleviate the strict identifiability require-

ment that two of the modes of the tensor must be non-degenerate. Especially in the R-D

case for R > 3 this can be achieved easily by means of “generalized” unfoldings [LA11]. We

have developed an extension of the SECSI framework to take these generalized unfoldings into

account and initial results on its performance are reported in [RSH12]. As expected, this ex-

tended framework outperforms SECSI in particular for R > 3. Since the generalized unfoldings

offer a vast amount of options how to arrange the data, the number of potential model esti-

mates becomes very large. Therefore, designing and evaluating appropriate heuristics for the

extended framework is a challenging task with great potential for additional improvements.

A third direction is to investigate the potential to implement SECSI in a truly parallelized

fashion, which would allow for an efficient practical implementation on suitable DSP hardware.

Also, an on-line implementation where the current solution is updated for every new batch of

observed data may be required by certain applications.

Considering the subspace-based multidimensional parameter estimation algorithms discussed

in the second part of the thesis, there are many open questions as well. Firstly, we have shown

algebraic extensions using the family of ESPRIT-type algorithms as an example (cf. Tables

13.1 and 13.2). However, the approach is so generic that it can be applied to many other

subspace-based algorithms as well. For instance, the tensor-based subspace estimate can be

used to enhance the R-D RARE or the R-D MODE algorithms, too. A completely tensor-

based formulation of the corresponding algorithms may lead to additional tensor gains that

are specific to the algorithms (as in the TS-SLS algorithm for Tensor-ESPRIT). Likewise,

the exploitation of non-circularity is possible for many other schemes (and has partly already

been demonstrated, e.g., for the MUSIC algorithm). Moreover, finding a way to exploit also
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weak-sense non-circularity or the coexistence of circular and non-circular signals for ESPRIT

is another open research item. For the analytical performance assessment, analytical results

for some of the algorithms are still missing, e.g., the NC ESPRIT-type and the NC Tensor-

ESPRIT-type algorithms (cf. Table 13.1). Also, the extension of the performance assessment

of Structured Least Squares (SLS) to the Tensor-Structure Structured Least Squares (TS-SLS)

algorithm is open. Another challenging task is to extend the simplified closed-form MSE ex-

pressions for the single-source case to the more relevant case of two sources. A description of

the MSE in terms of the physical parameter such as the correlation and the spatial separation

of the two sources may be very insightful. In this case, we observe a gain from using tensors in

simulations and hence we would like to understand under which conditions this gain is partic-

ularly pronounced. It would also be desirable to extend the first-order perturbation framework

to take into account the second-order terms since this provides insights into the performance

in the threshold region for low SNRs. Finally, applying all these ideas to different algorithms,

such as, R-D MUSIC, R-D MODE, or R-D RARE and investigating the tensor gain for these

cases is a promising path as well.

Concerning the final part on two-way relaying with MIMO AF relays, many unanswered

questions remain as well. A large open research area is the analytical performance assessment

of the algebraic schemes that have been proposed in this area. This includes the algebraic

channel estimation schemes TENCE and its SLS-based iterative refinement, where analytical

results on the achievable channel estimation accuracy and a comparison to the corresponding

Cramér-Rao Bound would be desirable. Also, the diversity order or the achievable sum-rate

of the algebraic relay amplification matrix designs could be of large practical significance. A

stronger analytical reasoning could also lead to new ideas for finding better versions of the Rank

Restored version of ANOMAX, which is so far computed based on heuristics. An extension

from the scenario with a single relay station to the case of multiple cooperating relay stations

is another interesting open area. In this case, local power constraints, the proper exchange of

channel state information, and network synchronization are major hurdles. Moreover, taking

into account real-world conditions such as Quality of Service (QoS) constraints, frequency-

selective fading, imperfect synchronization, or reciprocity imbalance is of significant practical

interest. Such considerations help to judge the robustness of the proposed algorithms and may

lead to new ideas how to improve them further with respect to real-world conditions. Finally,

integrating the two-way relaying protocol into a larger wireless communication system and

performing system-level simulations to assess its performance is an important step towards

the adaptation of our developed ideas into future mobile communication standards.
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Appendix A.

Glossary of Acronyms, Symbols and Notation

A.1. Acronyms

AF Amplify and Forward
ANC Analog Network Coding
ANOMAX Algebraic Norm Maximizing
ASK Amplitude Shift Keying
BC broadcast
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CoMP Coordinated Multipoint
CP Canonical Polyadic
DCM Dual Channel Matching
DET Dominant Eigenmode Transmission
DF Decode and Forward
DFT Discrete Fourier Transform
EEG Electroencephalography
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
EVD EigenValue Decomposition
FDMA Frequency Division Multiple Access
HOSVD Higher Order Singular Value Decomposition
LPA Largest Principle Angle
LS Least Squares
MAC multiple access
MCS Modulation and Coding Scheme
MDF Multidimensional Folding
MIMO Multiple Input Multiple Output
MODE Method of Direction of Arrival Estimation
MUSIC Multiple Signal Classification
MSE Mean Squared Error
MSRE Mean Square Reconstruction Error
MSK Minimum Shift Keying
OFDM Orthogonal Frequency Division Multiplexing
OQPSK Offset Quadrature Phase Shift Keying
PCA Principle Component Analysis
P2P Point to point
PRIME Polynomial Root Intersection for Multi-dimensional Estimation
RARE Rank-Reduction Estimator
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RF Radio Frequency
SDMA Space-Division Multiple Access
SLS Structured Least Squares
SMUX Spatial Multiplexing
SNR Signal to Noise Ratio
SVD Singular Value Decomposition
TDD Time Division Duplexing
TDMA Time Division Multiple Access
TLS Total Least Squares
TMSFE Total Mean Squared Factor Error
TS-SLS Tensor-Structure Structured Least Squares
ULA Uniform Linear Array
URA Uniform Rectangular Array
WF Water Filling
ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian

A.2. Symbols and Notation

R Set of real numbers

C Set of complex numbers

Z Set of integer numbers

e, π,  Euler’s number, π, and imaginary unit: eπ + 1 = 0
.
= Definition

a, b, c scalars

a, b, c column vectors

A, B, C matrices

A, B, C tensors

Re{x} Real part of complex variable x

Im{x} Imaginary part of complex variable x

arg {x} Argument (phase) of complex variable x

x∗ Complex conjugate of x

0M×N Matrix of zeros of size M ×N
1M×N Matrix of ones of size M ×N
IM Identity matrix of size M ×M
IR,d R-way identity tensor of size d × d . . . × d
ΠM Exchange of size M ×M with ones on its anti-diagonal and zeros elsewhere

Q ≽ 0 Q is a positive-semidefinite matrix[A](i,j) The (i, j)-element of the matrix A[ai]i=1,2,...,I An I × 1 column vector a with i-th element ai
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(⋅)T matrix transpose

(⋅)H Hermitian transpose

∥.∥2 Euclidean (two-) norm

∥.∥F Frobenius norm

∥.∥H Higher-Order (Frobenius) norm

A⊗B Kronecker product between A ∈ CM×N and B ∈ CP×Q defined as

A⊗B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ⋅B a1,2 ⋅B ⋯ a1,N ⋅B
a2,1 ⋅B a2,2 ⋅B ⋯ a2,N ⋅B
⋮ ⋮ ⋮ ⋮

aM,1 ⋅B aM,2 ⋅B ⋯ aM,N ⋅B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A ◇B Khatri-Rao (column-wise Kronecker) product between A ∈ CM×N and

B ∈ CP×N

A⊙B Schur (element-wise) product between A ∈ CM×N and B ∈ CM×N

A⊘B Inverse Schur product (element-wise division) between A ∈ CM×N and

B ∈ CM×N

vec{⋅} vec-operator: stack elements of a matrix/tensor into a column vector,

begin with first (row) index, then proceed to second (column), third, etc.

unvecI×J {⋅} inverse vec-operator: reshape elements of a vector back into a

matrix/tensor of indicated size

diag {⋅} transform a vector into a square diagonal matrix or extract main diagonal

of a square matrix and place elements into a vector

off {⋅} extracts all off-diagonal elements of a given square matrix X ∈ Cd×d, i.e.,

off {X} =X − (X ⊙ Id)
trace{⋅} trace of a matrix (sum of diagonal elements = sum of eigenvalues)

det{⋅} determinant of a matrix (product of eigenvalues)

rank{⋅} rank of a matrix

EVk {⋅} k-th eigenvalue of a matrix

orth{A} returns a matrix U ∈ CM×r with mutually orthonormal columns that span

the same space as the columns of A ∈ CM×r (assuming r ≤M)

A+ Moore-Penrose pseudo inverse [Moo20, Pen55] of a matrix A ∈ CM×N ,

which we can compute via

• A+ = V s ⋅Σ−1s ⋅UH
s , where A = U s ⋅Σs ⋅V H

s represents the

economy-size SVD of A (cf. Section 3.2).
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• A+ = (AH ⋅A)−1 ⋅AH if rank{A} = N (full column rank)

• A+ =AH ⋅ (A ⋅AH)−1 if rank{A} =M (full row rank).[X ](n) n-mode unfolding of tensor X in reverse cyclical column ordering

X ×n U n-mode product between tensor X and matrix U

X
R

⨉
r=1

rU r repeated n-mode products, short-hand notation for X ×1 U1 . . . ×R UR

[A n B] n-mode concatenation of tensors A and B

E{X} Expectation operator, i.e., mean of the random variable X

Med{X} Median of the random variable X, i.e., the point where

Pr[X ≤Med{X}] = 0.5. Note that Med{X} = E{X} only if X has a

symmetric distribution.N(µ,σ2) Gaussian distribution with mean µ, variance σ2

CN(µ,σ2) circularly symmetric complex Gaussian distribution

δ[x] Kronecker δ-symbol, δ[x] = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x = 0

0 if x ≠ 0

Qp Left-Π-real matrix satisfying Πp ⋅Q∗p =Qp.

Q
(s)
p Unitary sparse left-Π-real given by [HN95]

Q
(s)
2n =

1√
2

⎡⎢⎢⎢⎢⎣
In In

Πn −Πn

⎤⎥⎥⎥⎥⎦ and Q
(s)
2n+1 =

1√
2

⎡⎢⎢⎢⎢⎢⎢⎣
In 0n×1 In

0Tn×1
√
2 0Tn×1

Πn 0n×1 −Πn

⎤⎥⎥⎥⎥⎥⎥⎦
,

for even and for odd order, respectively.

DN An N ×N DFT matrix given by

DN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

1 wN . . . wN−1
N

1 w2
N . . . w

2(N−1)
N⋮ . . . ⋮ ⋮

1 wN−1
N . . . w

(N−1)2
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where wN = e
− 2π

N .
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B.1. Proof of Proposition 3.1.1

SinceA⊗X andX⊗A are both matrices of linear forms, it is clear that their vectorized versions

are linear forms as well. Therefore, they must be expressible as a coefficient matrix multiplying

vec{X}. Finding the correct alignment of the entries of A into this bigger coefficient matrix is

merely a matter of writing down the elements of vec{A⊗X} and vec{X ⊗A} in the correct

order and then reading the corresponding coefficients out.

For instance, considerX⊗A and for simplicity assume P = Q = 2 such thatX =

⎡⎢⎢⎢⎢⎣
x11 x12

x21 x22

⎤⎥⎥⎥⎥⎦.
Moreover, let A = [a1 . . .aN]. Then vec{X ⊗A} can be written as

vec

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣
x11 ⋅ [a1 . . .aN] x12 ⋅ [a1 . . .aN]
x21 ⋅ [a1 . . .aN] x22 ⋅ [a1 . . .aN]

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= [ x11 ⋅ aT1 x21 ⋅ aT1 . . . x11 ⋅ aTN x21 ⋅ aTN x12 ⋅ aT1 x22 ⋅ aT1 . . . x12 ⋅ aTN x22 ⋅ aTN ]T .

Consequently, the first 2M elements of vec{X ⊗A} are equal to a1 scaled by x11, then by

x21, the next 2M elements are a2 scaled by x11, then by x21, and so on. Therefore, the first

half of vec{X ⊗A} can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0

0 a1

a2 0

0 a2

⋮
aN 0

0 aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅
⎡⎢⎢⎢⎢⎣
x11

x21

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 ⊗ a1
I2 ⊗ a2
⋮

I2 ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎣
x11

x21

⎤⎥⎥⎥⎥⎦ . (B.1)
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Likewise, the second half can be expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0

0 a1

a2 0

0 a2

⋮
aN 0

0 aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅
⎡⎢⎢⎢⎢⎣
x12

x22

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 ⊗ a1
I2 ⊗ a2
⋮

I2 ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎣
x12

x22

⎤⎥⎥⎥⎥⎦ . (B.2)

Combining (B.1) and (B.2) we finally have

vec{X ⊗A} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 ⊗ a1
I2 ⊗ a2
⋮

I2 ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 ⊗ a1
I2 ⊗ a2
⋮

I2 ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

x12

x22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 ⊗ a1
I2 ⊗ a2
⋮

I2 ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ I2
⎞⎟⎟⎟⎟⎟⎠
⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

x12

x22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.3)

This shows the theorem for P = Q = 2, the extension to arbitrary P and Q is straightforward.

The derivation for vec{A⊗X} proceeds in a similar fashion.

B.2. Proof of Proposition 3.1.2

We start by the vectorization of A ◇X. By its definition it contains the vectors an ⊗ xn for

n = 1,2, . . . ,N . For each of those, we can apply (3.30), i.e., an⊗xn = (an ⊗ IP ) ⋅xn. Collecting

these vectors for all n we obtain

vec{A ◇X} =
⎡⎢⎢⎢⎢⎢⎢⎣
a1 ⊗x1

⋮
aN ⊗xN

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
(a1 ⊗ IP ) ⋅x1

⋮(aN ⊗ IP ) ⋅xN

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 ⊗ IP 0 ⋯ 0

0 a2 ⊗ IP ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ aN ⊗ IP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎢⎣
x1

x2

⋮xN

⎤⎥⎥⎥⎥⎥⎥⎦
(B.4)
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=

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 ⋯ 0

0 a2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ IP

⎞⎟⎟⎟⎟⎟⎠
⋅ vec{X} = ([IN ◇A]⊗ IP ) ⋅ vec{X} , (B.5)

which is the desired result. For vec{X ◇A}, by applying similar reasoning, we can show

vec{X ◇A} =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IP ⊗ a1 0 ⋯ 0

0 IP ⊗ a2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ IP ⊗ aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎢⎣
x1

x2

⋮xN

⎤⎥⎥⎥⎥⎥⎥⎦
. (B.6)

However, this coefficient matrix cannot directly be broken into a Kronecker product between

IP and IN ◇A since the columns would appear in the wrong order. Therefore, we compose

it in a different manner. What we need is a block-diagonal matrix, where the n-th block is

equal to IP ⊗an, i.e., another block diagonal matrix containing P repeated copies of the n-th

column of A. Therefore, we first modify the matrix A such that its N columns are repated

P times each, which can be accomplished by a multiplication with IN ⊗ 1TP×1. The resulting

M ×P ⋅N matrix is transformed into a block-diagonal matrix via the Khatri-Rao product with

an identity matrix of size P ⋅N × P ⋅N . This shows the second part of the proposition.

For the third part, we observe that the Schur product contains the terms bk,ℓ ⋅ xk,ℓ, i.e.,
each element of X gets scaled by one element in B. Therefore, the vectorized version of

X ⊙B contains the elements of X in the same order as vec{X} only multiplied with the

corresponding element in B. This can for instance be written as a pre-multiplication with a

diagonal matrix, i.e., diag {vec{B}} ⋅vec{X}. Alternatively, we can use a Khatri-Rao product

and write (IP ⋅N ◇ vec{B}T) ⋅ vec{X}.

B.3. The PC-Kronecker product

The Kronecker product between two matrices A and B is a matrix which contains all pair-wise

products of the elements of A and B [Bel60]. The ordering of these elements could be chosen
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in different ways. By convention, we have

A⊗B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ⋅B a1,2 ⋅B ⋯ a1,N ⋅B
a2,1 ⋅B a2,2 ⋅B ⋯ a2,N ⋅B
⋮ ⋮ ⋮ ⋮

aM,1 ⋅B aM,2 ⋅B ⋯ aM,N ⋅B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.7)

where A ∈ CM×N , B ∈ CP×Q, and ak,ℓ = [A](k,ℓ) denotes the (k, ℓ)-element of A.

In most cases, this arrangement of elements is convenient, as many identities are readily

expressed via this type of Kronecker product. There are, however, exceptions where a different

ordering would be beneficial to arrive at more compact expressions. To this end, we define a

“PC-Kronecker product” (PC = permuted columns) betweenA andB in the following manner

A ⊠B = [A⊗ b1 A⊗ b2 ⋯ A⊗ bQ] . (B.8)

The PC-Kronecker product is equal to the Kronecker product except for a different ordering

of its columns. Note that, like Kronecker products, multiple PC-Kronecker products are asso-

ciative, i.e., (A ⊠B) ⊠C =A ⊠ (B ⊠C). However, mixed Kronecker/PC-Kronecker products

are not associative, i.e., (A ⊠B)⊗C ≠A ⊠ (B ⊗C).
With the help of the PC-Kronecker product, we can for instance directly compute the

commutation matrices from [MN95], introduced in (3.34), via the simple relation KM,N =

IM ⊠ IN . For instance,

K3,4 = I3 ⊠ I4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.9)

272



B.4. Proof for Proposition 3.1.3

Likewise, the permutation matrices introduced in (4.11) are readily computed as

P
(1)
M1,M2,M3

= (IM3
⊠ IM2

)⊗ IM1
(B.10)

P
(2)
M1,M2,M3

= IM3
⊗ (IM2

⊠ IM1
) (B.11)

P
(3)
M1,M2,M3

= IM3
⊠ IM2

⊠ IM1
, (B.12)

or, in the general R-D case,

P
(r)
M1,M2,...,MR

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(IMR

⊠ . . . ⊠ IMr+1)⊗ (IMr ⊠ . . . ⊠ IM1
) r = 1,2, . . . ,R − 1

IMR
⊠ . . . ⊠ IM2

⊠ IM1
r = R.

(B.13)

B.4. Proof for Proposition 3.1.3

Let Y =A ⋅X and Z =B ⋅XH ⋅CH. Then, the left-hand side of (3.39) is equal to trace{Y ⋅Z}.
Using identity (3.8) we can rewrite this as

trace{Y ⋅Z} = vec{ZT}T ⋅ vec{Y } (B.14)

= vec{C∗ ⋅X∗BT}T ⋅ vec{A ⋅X} (B.15)

However, (B.15) represents the inner product of two linear forms for which we can apply (3.7).

We obtain

vec{C∗ ⋅X∗BT} ⋅ vec{A ⋅X} = [(B ⊗C∗) ⋅ vec{X∗}]T ⋅ (IN ⊗A) ⋅ vec{X} (B.16)

= vec{X∗}T ⋅ (BT ⊗CH) ⋅ (IN ⊗A) ⋅ vec{X} (B.17)

= vec{X}H ⋅ (BT ⊗CH ⋅A) ⋅ vec{X} , (B.18)

where we have additionally used (3.17). This is the desired result.

B.5. Diagonalizable matrices

In this appendix we discuss under which conditions a square matrix X ∈ CN×N is diagonal-

izable which implies that it possesses N linearly independent eigenvectors, as mentioned in

Section 3.2.

To this end we need to define the multiplicities of an eigenvalue. Let p(λ) = det{X − λ ⋅ IN} ∈
C be the characteristic polynomial of the matrix X so that the eigenvalues of X are the
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roots of p(λ). Then the algebraic multiplicity of a particular eigenvalue λn is defined as

the multiplicity of the root λn of the polynomial p(λ). On the other hand, the geometric

multiplicity λn is defined as the dimension of the nullspace of the matrix X − λn ⋅ IN . For

instance, if all eigenvalues are distinct, all geometric and algebraic multiplicities are equal to

one.

Based on this definition we have the following result [GvL80]: a matrix is diagonalizable if

for all eigenvalues, their algebraic and their geometric multiplicity agrees.

To illustrate this effect, let us consider a counter-example given by the matrix X

X =

⎡⎢⎢⎢⎢⎣
0 1

0 0

⎤⎥⎥⎥⎥⎦ . (B.19)

The characteristic polynomial of X is given by p(λ) = λ2. Therefore, the eigenvalues are λ1 =

λ2 = 0. In other words, the matrix has the eigenvalue 0 with algebraic multiplicity equal to two.

However, the geometric multiplicity of the eigenvalue 0 is only one since rank{X − 0 ⋅ I2} =
rank{X} = 1. Therefore, this particular matrix X is not diagonalizable.

B.6. Further notes on LS Kronecker/Khatri-Rao factorization when

one factor is known

The explicit expressions for the Least-Squares Kronecker factors provided in (3.54)-(3.57) can

be simplified by using (3.15) and (3.22) to expand the pseudo-inverse of the Kronecker and

the Khatri-Rao products, respectively.

Let us start with the Kronecker factorizations (3.55) and (3.57). Introducing the short hand

notation

C̃Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IQ ⊗ c1
IQ ⊗ c2
⋮

IQ ⊗ cN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.20)

equation (3.55) reads as vec{Y LS} = (C̃Q ⊗ IP )+ ⋅ vec{D}. We can apply (3.15) to rewrite(C̃Q ⊗ IP )+ as (C̃+Q ⊗ IP ). Furthermore, C̃Q is of size Q ⋅N ×Q and has has rank Q as long

as C is not equal to the zero matrix. Consequently, the pseudo-inverse of C̃Q can be written
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as C̃
H

Q ⋅ (C̃H

Q ⋅ C̃Q)−1. Via the definition of C̃Q from (B.20) it is easy to see that

C̃
H

Q ⋅ C̃Q =

N

∑
n=1

(IQ ⊗ cn)H ⋅ (IQ ⊗ cn) (B.21)

Applying (3.17), this can be further simplified into

C̃
H

Q ⋅ C̃Q =

N

∑
n=1

(IQ ⊗ (cHn ⋅ cn)) = IQ ⊗ ( N

∑
n=1

cHn ⋅ cn) = IQ ⋅ ∥C∥2F (B.22)

Consequently, the pseudo-inverse of C̃Q is easily expressed as C̃
+

Q = C̃
H

Q ⋅∥C∥−2F . This eliminates

all matrix inversions from (3.55). Using similar arguments for (3.57) we arrive at the simplified

rules

vec{Y LS} = ∥C∥−2F ⋅ (C̃H

Q ⊗ IP ) ⋅ vec{D} (B.23)

for D ≈ C ⊗Y and

vec{Y LS} = ∥C∥−2F ⋅ (IQ ⊗ C̃P ) ⋅ vec{D} (B.24)

for D ≈ Y ⊗C, respectively.

In [LP93], the same problem is addressed and a direct solution for Y is given in a different

form. For instance, the LS solution to D ≈ C ⊗Y is expressed as

[Y LS](i,j) = trace{DH
i,j ⋅C}

trace{CH ⋅C} , (B.25)

where Di,j = D(i ∶ P ∶ M ⋅ P, j ∶ Q ∶ N ⋅ Q), i.e., Di,j contains M × N elements from D,

starting with the (i, j) element and advancing by P and Q elements along columns and

rows, respectively. Certainly, (B.25) is equivalent to the direct solution given in (B.23),

since trace{CH ⋅C} = ∥C∥2F. However, it requires the definition of the block matrices Di,j

which (B.23) and (B.24) avoid.

In a similar manner, equation (3.54) for finding an LS Khatri-Rao factor of B ≈A ◇X can

be simplified by expanding the pseudo-inverse of [IN ◇A] ⊗ IP . We can first use (3.15) and

then (3.22) on the remaining pseudo-inverse of [IN ◇A] (note that (3.22) is applicable because
the matrix is of size M ⋅N ×N and has full column rank as long as none of the columns of A
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is equal to the zero vector). This leads to the simplified rule

vec{XLS} = [IN ⊙ (AH ⋅A)]−1 ([IN ◇A]H ⊗ IP ) ⋅ vec{B} (B.26)

= diag {[∥a1∥22 , . . . , ∥aN∥22]}−1 ⋅ ([IN ◇A]H ⊗ IP ) ⋅ vec{B} (B.27)

, = ([IN ◇A(0)]H ⊗ IP) ⋅ vec{B} (B.28)

where an is the n-th column of A and A(0) = A ⋅ diag {[∥a1∥22 , . . . , ∥aN∥22]}−1. Using similar

arguments for the LS Khatri-Rao factorization of B ≈ X ◇A we find the simplified version

of (3.56) as

vec{XLS} = [IP ⋅N ◇ (A(0) ⋅ [IN ⊗ 1TP×1])]H ⋅ vec{B} . (B.29)

B.7. Further properties of the permutation matrices

As we show in this section, the permutation matrices allow manipulations on R-fold Kronecker

products such as cyclical shifts. To this end, let B = A
R

⨉
r=1

rXr, where A ∈ C
I1×I2...×IR , B ∈

C
J1×J2...×JR , and Xr ∈ C

Jr×Ir . Then, applying (4.11) to B, we obtain

vec{B} = P (r)
β
⋅ vec{[B](r)}

vec{A R

⨉
r=1

rXr} = P (r)β
⋅ vec{Xr ⋅ [A](r) ⋅ (Xr+1 ⊗Xr+2 ⊗ . . .⊗Xr−1)T}

(XR ⊗ . . .⊗X1) ⋅ vec{A} = P (r)β
⋅ (Xr+1 ⊗ . . .⊗Xr−1 ⊗Xr)vec{[A](r)}

(XR ⊗ . . .⊗X1) ⋅P (r)α ⋅ vec{[A](r)} = P (r)β
⋅ (Xr+1 ⊗ . . .⊗Xr−1 ⊗Xr) ⋅ vec{[A](r)}

⇒ (XR ⊗ . . .⊗X1) ⋅P (r)α = P
(r)
β
⋅ (Xr+1 ⊗ . . .⊗Xr−1 ⊗Xr) (B.30)

where we have applied (4.5) in the first step, (4.20) as well as (3.7) in the second step, and (4.11)

in the third step. Here, α and β represent (I1, I2, . . . , IR) and (J1, J2, . . . , JR), respectively.
Equation (B.30) shows the following:

• The permutation matrices P (R) can reverse the order in a Kronecker product.

(XR ⊗XR−1 ⊗ . . .⊗X1) ⋅P (R)α = P
(R)
β
⋅ (X1 ⊗X2 ⊗ . . .⊗XR) (B.31)

• The permutation matrices P (r), r < R reverse the order of the Kronecker product and

276



B.8. Proof for Theorem 4.1.1

then perform a cyclic shift by r terms

(XR ⊗XR−1 ⊗ . . .⊗X1) ⋅P (1)α = P
(1)
β
⋅ (X2 ⊗X3 ⊗ . . .⊗XR ⊗X1)

(XR ⊗XR−1 ⊗ . . .⊗X1) ⋅P (2)α = P
(2)
β
⋅ (X3 ⊗X4 ⊗ . . .⊗XR ⊗X1 ⊗X2) ,

etc., where a cyclic shift by one term is the operation that maps an ordered sequence[x1, x2, . . . , xR] onto the sequence [x2, x3, . . . , xR, x1] and a cyclic shift by r terms is the

result of applying this operation r times.

• The inverse permutation matrix is given by

(P (r)I1,I2,...,IR
)−1 = P (r)TI1,I2,...,IR

= P
(r)
Ir,Ir−1,...,I1,IR,...,Ir+1

. (B.32)

• We can define matrices Q(r) .
= P (R)T ⋅ P (r) which perform a cyclic shift by r terms

without reversing the order:1

(X1 ⊗X2 ⊗ . . .⊗XR) ⋅Q(1)α = Q
(1)
β
⋅ (X2 ⊗X3 ⊗ . . .⊗XR ⊗X1)

(X1 ⊗X2 ⊗ . . .⊗XR) ⋅Q(2)α = Q
(2)
β
⋅ (X3 ⊗X4 ⊗ . . .⊗XR ⊗X1 ⊗X2) ,

etc. Note that [MN79] shows that for the special case R = 3 such a cyclical shift can be

achieved by virtue of commutation matrices in the following fashion:

(X1 ⊗X2 ⊗X3) ⋅KI1,I2⋅I3 =KJ1,J2⋅J3 (X2 ⊗X3 ⊗X1)
(X1 ⊗X2 ⊗X3) ⋅KI1⋅I2,I3 =KJ1⋅J2,J3 (X3 ⊗X1 ⊗X2) .

A corollary that follows from this is that the permutation matrices satisfy

KI1,I2⋅I3 = P
(R)T
I1,I2,I3

⋅P (1)I1,I2,I3
=Q

(1)
I1,I2,I3

= P
(R)
I3,I2,I1

⋅P (1)I1,I2,I3
(B.33)

KI1⋅I2,I3 = P
(R)T
I1,I2,I3

⋅P (2)I1,I2,I3
=Q

(2)
I1,I2,I3

= P
(R)
I3,I2,I1

⋅P (2)I1,I2,I3
. (B.34)

B.8. Proof for Theorem 4.1.1

Proving this theorem is mainly a manner of enumerating the elements of the tensor and its

vectorized versions and then comparing the different results. For instance, to show (4.13), we

1The reason for the order-reversing to be included in the definition of the permutation matrices is that the
reverse cyclical column-ordering rule for the matrix unfoldings from [dLdMV00b] is used for their definition.
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can express [A](1) as
[A](1) = [a1,1,a1,2, . . . ,a1,M3

,a2,1,a2,2, . . . ,aM2,M3
] (B.35)

where ak,ℓ are the 1-mode vectors of A, i.e., ak,ℓ = [a1,k,ℓ, a2,k,ℓ, . . . , aM1,k,ℓ]T. Here, aj,k,ℓ

denotes the (j, k, ℓ)-element of A for j = 1,2, . . . ,M1, k = 1,2, . . . ,M2 and ℓ = 1,2, . . . ,M3.

Using this definition, [A]T(2) becomes

[A]T(2) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a2,1 . . . aM2,1

a1,2 a2,2 . . . aM2,2⋮ ⋮ ⋮ ⋮
a1,M3

a2,M3
. . . aM2,M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.36)

Obviously, vectorizing (B.35) and (B.36) gives the same result, namely, the vectors ak,ℓ stacked

on top of each other, where first the second index ℓ is varied and then the first index k.

Identities (4.14) and (4.15) are shown using similar arguments for the 2-mode vectors and

the 3-mode vectors of A, respectively.
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C.1. Proof of Theorem 7.1.1

To show the essential uniqueness of the SMD-based estimates of the loading matrices used in

SECSI, we first need the following lemma about the uniqueness of the SMD:

Lemma C.1.1. Consider the exact (noise-free) SMD of K matrix slices Xk = T ⋅Λk ⋅ T −1,
k = 1,2, . . . ,K. Then, the matrix T is identified only up to a permutation and a scaling

ambiguity of its columns and the matrix Λn is identified only up to the same permutation of

its diagonal elements.

Proof. The existence of the ambiguities follows from the observation that for every slice k we

have T ⋅Λk ⋅T −1 = T̄ ⋅ Λ̄k ⋅ T̄ −1, where T̄ = T ⋅P ⋅D and Λ̄k = P
−1 ⋅Λk ⋅P . Here, D = diag {d}

is an arbitrary diagonal matrix and P is a permutation matrix. Since D is diagonal we have

P ⋅D ⋅P −1 = diag {P ⋅ d}, i.e., P ⋅D ⋅P −1 is again a diagonal matrix with permuted elements

on the main diagonal. Therefore, we can write

T̄ ⋅ Λ̄k ⋅ T̄ −1 = T ⋅P ⋅D ⋅P −1 ⋅Λk ⋅P ⋅D−1 ⋅P −1 ⋅ T −1
= T ⋅Λk ⋅P ⋅D ⋅P −1 ⋅P ⋅D−1 ⋅P −1 ⋅ T −1
= T ⋅Λk ⋅ T −1, (C.1)

where in the first step we have used the fact that the product of diagonal matrices commutes.

The theorem can be shown by applying the lemma to the SMDs solved in the SECSI frame-

work. As an example, consider the SMD for Slhs
3,k shown in (7.12). From Lemma C.1.1 we

know that instead of T 1 we may find the matrix T̄ 1 = T 1 ⋅P ⋅D1.

Since we find F̂
(1)

based on the ambiguous estimate T̄ 1 via F̂
(1)
= U

[s]
1 ⋅ T̄ 1, we have

F̂
(1)
= U

[s]
1 ⋅ T̄ 1 = U

[s]
1 ⋅ T 1 ⋅P ⋅D1 = F

(1) ⋅P ⋅D1. (C.2)
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The matrix F̃
(3)

is found by row-wise augmentation of the diagonals of Λk. Since they are

permuted by P , we identify F̃
(3)

up to a permutation ambiguity of its columns. Moreover, as

F̃
(3)

is a scaled version of F (3) where the s3-th row is scaled to one, a corresponding scaling

ambiguity in identifying F (3) is also present. Consequently, we have

F̂
(3)
= F (3) ⋅P ⋅D3. (C.3)

The matrix F (2) is then found via an LS fit according to F̂
(2)
= [X ](2) ⋅ [(F̂ (3) ◇ F̂ (1))+]T.

Inserting (C.2) and (C.3) we obtain

F̂
(2)
= [X ](2) ⋅ [((F (3) ⋅P ⋅D3) ◇ (F (1) ⋅P ⋅D1))+]T
= [X ](2) ⋅ [([(F (3) ⋅P ) ◇ (F (1) ⋅P )] ⋅D3 ⋅D1)+]T
= [X ](2) ⋅ [([F (3) ◇F (1)] ⋅P ⋅D3 ⋅D1)+]T
= [X ](2) ⋅ [(P ⋅D3 ⋅D1)−1 ⋅ [F (3) ◇F (1)]+]T
= [X ](2) ⋅ [(D3 ⋅D1)−1 ⋅PT ⋅ [F (3) ◇F (1)]+]T
= [X ](2) ⋅ [[F (3) ◇F (1)]+]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F (2)

⋅P ⋅ (D1 ⋅D3)−1

= F (2) ⋅P ⋅ (D1 ⋅D3)−1 , (C.4)

where in the first step we have used (3.20), the second step follows from the fact that the Khatri-

Rao product is computed column-wise and hence the column permutation can be moved to

the right, and in the 4th step we have used that P −1 = PT, since P is a permutation matrix.

This concludes the proof of the theorem.
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D.1. A CP formulation for the array steering tensor

In this appendix we show that the definition of the array steering tensor via repeated (R+ 1)-
mode concatenations given in (9.12) can be rewritten in form of a CP decomposition, as

discussed in Section 4.2. To this end, note that we can write A ∈ CM1×...×MR×d as A ×R+1 Id.
Inserting A = [A1 R+1A2 R+1 . . . R+1Ad] from (9.12) we obtain

A = [A1 R+1A2 R+1 . . . R+1Ad] ×R+1 Id
= [A1 R+1A2 R+1 . . . R+1Ad] ×R+1 [e1 e2 . . . ed]
=

d

∑
i=1

Ai ×R+1 ei
=

d

∑
i=1

Ai ○ ei, (D.1)

where from the second to the third line we have applied (4.10) and ei represents the i-th

column of Id. Moreover, in the last step we have used the fact that the r-mode product with

a column vector is the same as an outer product. Inserting (9.13) into (D.1) we obtain

A =
d

∑
i=1

a
(1)
i ○ a(2)i ○ . . . ○ a(R)i ○ ei, (D.2)

which is a CP decomposition in component form as shown in (4.30). Via (4.34) this can

alternatively be expressed as

A = IR+1,d ×1A(1) . . . ×RA(R) ×R+1 [e1 e2 . . . ed]
= IR+1,d ×1A(1) . . . ×RA(R) ×R+1 Id
= IR+1,d ×1A(1) . . . ×RA(R), (D.3)

which shows the validity of (9.15).
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D.2. Notes on 2-D arrays with equal beampatterns

In this appendix we comment on the separability and the centro-symmetry of 2-D arrays (cf.

Section 9.2) where the elements have arbitrary beam patterns. Let A ∈ CM×d be the array

steering matrix of the antenna array. Then A can be written as

A =G⊙ Ā, (D.4)

where G ∈ CM×d contains the beam patterns of the M antenna elements for the d sources,

i.e., [G](m,n) = gm(θn, αn) for m = 1,2, . . . ,M and n = 1,2, . . . d. Moreover, Ā ∈ CM×d is the

“normalized” array steering matrix which only contains the phase offsets between different

elements due to their displacement. For instance, for an M1 ×M2 Uniform Rectangular Array

(URA), Ā = Ā
(1) ◇ Ā(2), where Ā(r) are Vandermonde matrices of the form

Ā
(r)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1

e⋅µ
(r)
1 e⋅µ2(r) ⋯ e⋅µ

(r)
d

⋮ ⋮ ⋮ ⋮
e⋅(Mr−1)⋅µ(r)1 e⋅(Mr−1)⋅µ2(r) ⋯ e⋅(Mr−1)⋅µ(r)d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D.5)

In general, for (D.4) to be separable, we need Ā to be separable (for which the geometric

alignment of the antenna elements needs to be separable, cf. Figure 9.3) andG to be separable,

i.e., G = G(1) ◇G(2). However, this is not necessary if all the elements share the same beam

pattern, as we demonstrate next. In such a case, all the rows of G are identical and we can

write

G = 1M ⋅ gT, (D.6)

where gT = [g(θ1, α1) . . . g(θd, αd)] ∈ C1×d. Inserting (D.6) into (D.4) we can apply (3.21)

to write A as

A = (1M ⋅ gT)⊙ Ā = diag {1M}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
IM

⋅Ā ⋅ diag {g} = Ā ⋅ diag {g} . (D.7)

However, the scaling by diag {g} is irrelevant since on our data modelX =A⋅S+N from (9.16)

it can be incorporated into the symbol matrix S. Therefore, it is sufficient that Ā is separable

into (Ā(1) ◇ Ā(2)) if all elements share the same (arbitrary) complex beam pattern g(θ,α).
Note that a similar argument is true for centro-symmetry. If the antenna configuration itself
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is centro-symmetric, i.e., ΠM ⋅ Ā∗ = Ā ⋅ ∆̄, we can allow for arbitrary complex beam patterns

g(θ,α) as long as they are common to all elements. This is easily seen by inserting (D.7) into

the condition (9.20)

ΠM ⋅A∗ =A ⋅∆
⇔ΠM ⋅ Ā∗ ⋅ diag {g∗} = Ā ⋅ diag {g} ⋅∆
⇔ Ā ⋅ ∆̄ ⋅ diag {g∗} = Ā ⋅ diag {g} ⋅∆

⇔∆ = diag {g}+ ⋅ ∆̄ ⋅ diag {g∗} . (D.8)

This shows that ΠM ⋅ Ā∗ = Ā ⋅ ∆̄ already implies the condition for centro-symmetry of the

whole array ΠM ⋅A∗ = A ⋅∆ if all the elements share the same beam pattern and we choose

∆ according to (D.8).

D.3. Proof of Theorem 10.2.1

As shown in (10.10), the estimated signal subspace tensor can be computed via

Û
[s]
= Ŝ

[s] ×1 Û [s]1 . . . ×R Û [s]R ×R+1 Σ̂[s]−1R+1 . (D.9)

Here, Ŝ
[s]

represents the truncated version core tensor Ŝ from the HOSVD of X . In order to

eliminate Ŝ
[s]

we require the following lemma:

Lemma D.3.1. The truncated core tensor Ŝ
[s]

can be computed from X directly via

Ŝ = X ×1 Û [s]H1 . . . ×R+1 Û [s]HR+1. (D.10)

Proof. To show (D.10) we insert the HOSVD of X given by X = Ŝ ×1 Û1 . . .×R+1 ÛR+1. Using

the rules for n-mode products (cf. Section 4.1), we obtain

Ŝ = S ×1 (Û [s]H1 ⋅ Û1) . . . ×R+1 (Û [s]HR+1 ⋅ ÛR+1) . (D.11)

However, since the matrices of r-mode singular vectors Û r are unitary, they satisfy Û
[s]H
r ⋅Û r =[Ipr , 0pr×(Mr−pr)]. Consequently, we have

Ŝ
[s]
= Ŝ ×1 [Ip1 , 0p1×(M1−p1)] . . . ×R+1 [IpR+1 , 0pR+1×(MR+1−pR+1)] . (D.12)
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Therefore, Ŝ
[s]

computed via (D.10) contains the first pr elements of Ŝ in the r-th mode,

which shows that it is indeed the truncated core tensor.

Next, we use Lemma D.3.1 to eliminate Ŝ in (D.9). We obtain

Û
[s]
=X ×1 (Û [s]1 ⋅ Û [s]H1 ) . . . ×R (Û [s]R ⋅ Û [s]HR ) ×R+1 (Σ̂[s]−1R+1 ⋅ Û [s]HR+1)
=X ×1 T̂ 1 . . . ×R T̂R ×R+1 (Σ̂[s]−1R+1 ⋅ Û [s]HR+1) , (D.13)

where we have introduced the short hand notation T̂ r = Û
[s]
r ⋅ Û [s]Hr .

The next step is to compute the matrix [Û [s]]T(R+1). Inserting (D.13) and using the rules

for the unfoldings of repeated n-mode products, we obtain

[Û [s]]T(R+1) = [(Σ̂[s]
−1

R+1 ⋅ Û [s]HR+1) ⋅ [X ](R+1) ⋅ (T̂ 1 ⊗ . . .⊗ T̂R)T]T
= (T̂ 1 ⊗ . . .⊗ T̂R) ⋅ [X ]T(R+1) ⋅ Û [s]∗R+1 ⋅ Σ̂[s]−1R+1 , (D.14)

where in the last step we have used the fact that the transpose operator has no effect on Σ̂
[s]−1
R+1

since this matrix is diagonal.

As pointed out in Section 10.2, the link between the measurement matrix X and the mea-

surement tensor X is given by X = [X ]T(R+1). Note that their SVDs are given by

X = Û ⋅ Σ̂ ⋅ V̂ H
= [Û s, Ûn] ⋅ ⎡⎢⎢⎢⎢⎣

Σ̂s 0d×(N−d)
0(M−d)×d Σ̂n

⎤⎥⎥⎥⎥⎦ ⋅ [V̂ s, V̂ n]H (D.15)

[X ](R+1) = [Û [s]R+1, Û
[n]
R+1
] ⋅ ⎡⎢⎢⎢⎢⎣

Σ̂
[s]
R+1 0d×(N−d)

0(M−d)×d Σ̂
[n]
R+1

⎤⎥⎥⎥⎥⎦ ⋅ [V̂
[s]
R+1, V̂

[n]
R+1
]H (D.16)

and hence linked through the following identities

Û s = V̂
[s]∗
R+1, Ûn = V̂

[n]∗
R+1, V̂ s = Û

[s]∗
R+1, V̂ n = Û

[n]∗
R+1, Σ̂s = Σ̂

[s]
R+1. (D.17)

Consequently we can write

[X ]T(R+1) ⋅ Û [s]∗R+1 ⋅ Σ̂[s]−1R+1 =X ⋅ V̂ s ⋅ Σ̂−1s = Û ⋅ Σ̂ ⋅ V̂ H ⋅ V̂ s ⋅ Σ̂−1s = Û s ⋅ Σ̂s ⋅ Σ̂−1s = Û s, (D.18)

where we have use the orthonormality of V̂ which implies V̂
H ⋅ V̂ s = [Id, 0d×(N−d)]. Finally,
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inserting (D.18) into (D.14) yields

[Û [s]]T(R+1) = (T̂ 1 ⊗ . . .⊗ T̂R) ⋅ Û s, (D.19)

which is the desired result.

Corollary D.3.2. A corollary which follows from this theorem is that the exact subspace U s

satisfies the following identity

U s = (T 1 ⊗ . . .⊗ TR) ⋅U s. (D.20)

Proof. The corollary follows by considering the special case where X = X 0 and hence T̂ r = T r

as well as Û s = U s. For this case we also have [Û [s]]T(R+1) = [U [s]]T(R+1) = U s, where the last

identity resembles the fact that in the noise-free case, the HOSVD-based subspace estimate

coincides with the SVD-bases subspace estimate.

D.4. Proof of Theorem 11.4.2

We begin by eliminating the Higher-Order Frobenius norm in the tensor-valued Least Squares

problem. Considering the fact that it is defined as the square-root of the sum of the squared

magnitude of all elements it is immediately evident that the Higher-Order Frobenius norm

of a tensor is equal to the Frobenius norm of an arbitrary rearrangement of all the elements

into a matrix. Specifically, we have for arbitrary tensors Z ∈ CI1×I2...×IR the identity ∥Z∥H =∥[Z](r)∥F = ∥[Z]T(r)∥F, ∀r = 1,2, . . . ,R, i.e., the Higher-Order Frobenius norm of Z is equal

to the Frobenius norm of all its unfoldings.

Based on this idea we can reformulate any tensor-valued LS problem into a matrix-valued

LS problem. For the problem (11.13) at hand we use the (R + 1)-mode unfolding and obtain

Ψ̂
(r)
LS = argmax

Ψ

XXXXXXXXXXXΨ⋅ [Û
[s]](R+1) ⋅ (IM1

⊗ . . .⊗ IMr−1 ⊗ J(r)1 ⊗ IMr+1 ⊗ . . .⊗ IMR
)T

− [Û [s]](R+1) ⋅ (IM1
⊗ . . .⊗ IMr−1 ⊗ J(r)2 ⊗ IMr+1 ⊗ . . .⊗ IMR

)T XXXXXXXXXXX
2

F

= argmax
Ψ

XXXXXXXXXXXΨ⋅ [Û
[s]](R+1) ⋅ J̃(r)

T

1 − [Û [s]](R+1) ⋅ J̃(r)
T

2

XXXXXXXXXXX
2

F

(D.21)
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where we have used (4.5) in the first step and the definition of J̃
(r)
n from (11.5) in the second

step. Equation (D.21) is a matrix-valued Least Squares problem of the form argminX ∥XA −B∥2F
which has the closed-form solution XLS =B ⋅A+. Consequently, we obtain

Ψ̂
(r)
LS = [Û [s]](R+1) ⋅ J̃(r)

T

2 ⋅ ([Û [s]](R+1) ⋅ J̃(r)
T

1 )+ (D.22)

Since the pseudo-inverse of a matrix satisfies (AT)+ = (A+)T, we can simplify (D.22) into

Ψ̂
(r)
LS = [J̃(r)2 ⋅ [Û [s]]T(R+1)]

T ⋅ [(J̃(r)1 ⋅ [Û [s]]T(R+1))
+]T

= [(J̃(r)1 ⋅ [Û [s]]T(R+1))
+

J̃
(r)
2 ⋅ [Û [s]]T(R+1)]

T

, (D.23)

which proves the theorem.

D.5. Proof of Theorem 11.5.1

According to Theorem 11.5.1 we have to show that (11.26) is true. Inserting (11.27) into (11.26)

this is equivalent to showing

⎡⎢⎢⎢⎢⎣
J1 0

0 ΠM(sel) ⋅ J2 ⋅ΠM

⎤⎥⎥⎥⎥⎦ ⋅
⎡⎢⎢⎢⎢⎣

A

ΠM ⋅A∗ ⋅Ψ∗ ⋅Ψ∗
⎤⎥⎥⎥⎥⎦ ⋅Φ =

⎡⎢⎢⎢⎢⎣
J2 0

0 ΠM(sel) ⋅ J1 ⋅ΠM

⎤⎥⎥⎥⎥⎦ ⋅
⎡⎢⎢⎢⎢⎣

A

ΠM ⋅A∗ ⋅Ψ∗ ⋅Ψ∗
⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣

J1 ⋅A
ΠM(sel) ⋅ J2 ⋅ΠM ⋅ΠM ⋅A∗ ⋅Ψ∗ ⋅Ψ∗

⎤⎥⎥⎥⎥⎦ ⋅Φ =
⎡⎢⎢⎢⎢⎣

J2 ⋅A
ΠM(sel) ⋅ J1 ⋅ΠM ⋅ΠM ⋅A∗ ⋅Ψ∗ ⋅Ψ∗

⎤⎥⎥⎥⎥⎦
(D.24)

The first M (sel) rows of (D.24) are given by J1 ⋅A ⋅Φ = J2 ⋅A, which was assumed for the

Theorem. The second M (sel) rows can be simplified by multiplying from the left with ΠM(sel)

and then using the fact that ΠM ⋅ΠM = IM . We obtain

J2 ⋅A∗ ⋅Ψ∗ ⋅Ψ∗ ⋅Φ = J1 ⋅A∗ ⋅Ψ∗ ⋅Ψ∗ (D.25)

Since Ψ and Φ are diagonal, their order can be exchanged. Multiplying with Ψ from the right

hand side twice then cancels Ψ since Ψ∗ ⋅Ψ = Id. We are left with

J2 ⋅A∗ ⋅Φ = J1 ⋅A∗
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J2 ⋅A∗ = J1 ⋅A∗ ⋅Φ∗, (D.26)

where in the last step we have multiplied with Φ∗ from the right-hand side and used the fact

that Φ∗ ⋅Φ = Id. Finally, conjugating (D.26) shows that the condition is indeed equivalent to

J1 ⋅A ⋅Φ = J2 ⋅A, which was assumed for the theorem. This concludes the proof.

D.6. Proof of Theorem 11.6.1

To show (11.38) we first define Ã = A∗ ×1 ΠM1
. . . ×R ΠMR

×R+1 (Ψ∗ ⋅ Ψ∗). By virtue of

this definition, A(nc,r) can be written as A(nc,r) = [A r Ã] (cf. (11.37)). Therefore, (11.38)

becomes

[A r Ã] ×r J(nc)(r)1 ×R+1 Φ(r) = [A r Ã] ×r J(nc)(r)2 . (D.27)

Applying (4.8) and (4.9) we can rewrite (D.27) as

[(A ×r J(r)1 ) r (Ã ×r (ΠM
(sel)
r
J
(r)
2 ΠMr))] ×R+1 Φ(r)

= [(A ×r J(r)2 ) r (Ã ×r (ΠM
(sel)
r
J
(r)
1 ΠMr))]

[(A ×r J(r)1 ×R+1 Φ(r)) r (Ã ×r (ΠM
(sel)
r
J
(r)
2 ΠMr) ×R+1 Φ(r))]

= [(A ×r J(r)2 ) r (Ã ×r (ΠM
(sel)
r
J
(r)
1 ΠMr))] (D.28)

where we have inserted the definition of J
(nc)(r)
1 and J

(nc)(r)
2 from (11.29) and (11.30). Ob-

viously, the parts on the left-hand side of the r-mode concatenation operator are equal, since

A ×r J(r)1 ×R+1 Φ(r) =A ×r J(r)2 . What remains to be shown is that

Ã ×r (ΠM
(sel)
r
J
(r)
2 ΠMr) ×R+1 Φ(r) = Ã ×r (ΠM

(sel)
r
J
(r)
1 ΠMr). (D.29)

Inserting the definition of Ã, (D.29) becomes

A∗ ×1 ΠM1
. . . ×r (ΠM

(sel)
r
J
(r)
2 ) . . . ×R ΠMR

×R+1 Φ(r)
=A∗ ×1 ΠM1

. . . ×r (ΠM
(sel)
r
J
(r)
1 ) . . . ×R ΠMR

. (D.30)

287



Appendix D. Proofs and derivations for Part III

Conjugating (D.30) and multiplying with ΠMq along all modes q = 1,2, . . . ,R, q ≠ r and with

Π
M
(sel)
r

along mode r we have

A ×r J(r)2 ×R+1 Φ(r)∗ =A ×r J(r)1 . (D.31)

Finally, insertingA×rJ(r)2 =A×rJ(r)1 ×R+1Φ(r) into (D.31) we are left withA×rJ(r)1 =A×rJ(r)1

which is obviously a true statement. This concludes the proof of the theorem.

D.7. Proof of Theorem 11.6.2

Let us consider the noise-free case N =O. In this case, we have

X (nc,r) =A(nc,r) ×R+1 ST (D.32)

from (11.36). Moreover, since the HOSVD ofX (nc,r) is given byX (nc,r) = S[s](r)×1U [s](r)1 . . .×R
U
[s](r)
R ×R+1 U [s](r)R+1 , we can compute U [s](r) via

U [s](r) = X (nc,r) ×R+1 (Σ[s](r)−1R+1 ⋅ (U [s](r)R+1 )H) (D.33)

(cf. (11.39)). Combining (D.32) and (D.33) we obtain

U [s](r) =A(nc,r) ×R+1 (Σ[s](r)−1R+1 ⋅ (U [s](r)R+1 )H ⋅ST)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T r

(D.34)

To proceed, we require the following lemma:

Lemma D.7.1. The r-mode augmented measurement tensors X (nc,r) satisfy

[X (nc,r)](R+1) ⋅ [X (nc,r)]H(R+1) = 2Re{[X ](R+1) ⋅ [X ]H(R+1)} . (D.35)

Proof. The R+1-mode unfolding of X (nc,r) contains all (R+1)-mode vectors of X (nc,r). Since
X (nc,r) is the r-mode concatenation of X and X ∗ ×1 ΠM1

. . . ×R ΠMR
, it is evident that its(R + 1)-mode vectors contain the (R + 1)-mode vectors of X and the (R + 1)-mode vectors of

X ∗, in some order. Hence, we can write

[X (nc,r)](R+1) = [[X ](R+1) [X ]∗(R+1)] ⋅P r, (D.36)
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where P r is a permutation matrix. Since for any permutation matrix we have PH
r = P

−1
r ,

we can write [X (nc,r)](R+1) ⋅ [X (nc,r)]H(R+1) = [X ](R+1) ⋅ [X ]H(R+1) + [X ]∗(R+1) ⋅ [X ]T(R+1) =
2Re{[X ](R+1) ⋅ [X ]H(R+1)}, which proves the lemma.

From the lemma we conclude that [X (nc,r)](R+1) ⋅ [X (nc,r)]H(R+1) is not a function of r. This

is significant as we need the matrices Ψ(r) to have common eigenvectors for the pairing in R-D

ESPRIT and, therefore, T r in (D.34) should be independent of r. To show this we observe

that Σ
[s](r)
R+1 and U

[s](r)
R+1 represent the set of right singular vectors and the set of singular

values of [X (nc,r)](R+1) and hence they can alternatively be computed via the eigenvalue

decomposition of [X (nc,r)](R+1) ⋅ [X (nc,r)]H(R+1). Consequently, Σ
[s](r)
R+1 and U

[s](r)
R+1 must be

equal for all r = 1,2, . . . ,R due to (D.35). Remembering that T r in (D.34) is defined as

T r =Σ
[s](r)−1
R+1 ⋅ (U [s](r)R+1 )H ⋅ST we immediately find that T r is also equal for all r = 1,2, . . . ,R.

Therefore, we have U [s](r) = A(nc,r) ×R+1 T . Inserting this relation into the shift invariance

equations (11.38) we obtain

U [s](r) ×r J(nc)(r)1 ×R+1 T −1 ×R+1 Φ(r) = U [s](r) ×r J(nc)(r)2 ×R+1 T −1 (D.37)

U [s](r) ×r J(nc)(r)1 ×R+1 (T ⋅Φ(r) ⋅ T −1) = U [s](r) ×r J(nc)(r)2 , (D.38)

which proves the theorem.

Note that when computing the truncated HOSVD of X (nc,r), special attention must be

paid with respect to the n-ranks. While for R-D Tensor-ESPRIT-type algorithms the n-

ranks of X are always less than or equal to d, for R-D NC Tensor-ESPRIT the n-ranks can

exceed d. This is easy to see from the fact that the noise-free observation tensor factors into

X (nc,r) = A(nc,r) ×R+1 ST and hence its n-ranks are determined by the n-ranks of A(nc,r).
Consider the r-mode unfolding of A(nc,r). Using the definition of Ã as in Appendix D.6 such

that A(nc,r) = [A r Ã] we can express the r-mode unfolding via (4.4) as

[A(nc,r)](r) =
⎡⎢⎢⎢⎢⎣
[A](r)[Ã](r)

⎤⎥⎥⎥⎥⎦ . (D.39)

Applying property (4.25) to the definition of A given in (9.15) we obtain for [A](r)
[A](r) =A(r) ⋅ (A(r+1) ◇ . . . ◇A(R) ◇ Id ◇A(1) ◇ . . . ◇A(r−1))T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B(r)
T

. (D.40)
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Likewise, for [Ã](r) we can show using similar reasoning

[Ã](r) =ΠMrA
(r)∗ ⋅ (D.41)

((ΠMr+1A
(r+1)∗) ◇ . . . ◇ (ΠMR

A(R)∗) ◇Ψ∗2 ◇ (ΠM1
A(1)∗) ◇ . . . ◇ (ΠMr−1A

(r−1)∗))T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B̃
(r)T

.

Therefore, [A(nc,r)](r) becomes

[A(nc,r)](r) =
⎡⎢⎢⎢⎢⎣

A(r) ⋅B(r)T
ΠMr ⋅A(r)∗ ⋅ B̃(r)T

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
A(r) 0Mr×d

0Mr×d ΠMr ⋅A(r)∗
⎤⎥⎥⎥⎥⎦ ⋅ [B

(r) B̃
(r)]T . (D.42)

Equation (D.42) shows that [A(nc,r)](r) can be expressed as the product of a matrix of size

2Mr × 2d which has rank 2d if A(r) is full column rank and the transpose of a matrix of size

M ⋅ d/Mr × 2d. Note that the second matrix has a rank higher than d if B(r) and B̃(r) do
not have the same column space. This is the case if the array is not centro-symmetric in

some mode q = 1,2, . . . ,R, q ≠ r. Consequently, if the array is not fully centro-symmetric, the

n-ranks of the augmented array steering tensor can exceed d (for n = 1,2, . . . ,R), in the worst

case they can reach 2d. This has to be taken into account when computing the truncated

HOSVD for the HOSVD-based signal subspace estimate, e.g., by truncating only up to 2d in

the first R modes to be on the safe side.

D.8. Proof of Theorem 11.6.3

Let Z(nc,r) be the forward-backward averaged r-mode augmented measurement tensor, i.e.,

Z(nc,r) = [X (nc,r) R+1 (X (nc,r)∗ ×1 ΠM1
. . . ×R ΠMR

×R+1 ΠN)]. Since X (nc,r) = [X r X̃ ]
where X̃ = X ∗ ×1 ΠM1

. . . ×R ΠMR
we can expand Z(nc,r) into

Z(nc,r) = [[X r X̃ ] R+1 [(X ×R+1 ΠN) r (X̃ ×R+1 ΠN)]] (D.43)

using (4.8), (4.9), and (4.10). In the next step, let us compute the (R + 1)-mode product

between Z(nc,r) and QH
2N . Using the sparse left-Π-real matrices Q

(s)
p introduced in [HN95]
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(cf. Appendix A.2), we obtain

Z(nc,r) ×R+1 1√
2

⎡⎢⎢⎢⎢⎣
IN ΠN

−IN ΠN

⎤⎥⎥⎥⎥⎦
= [[X r X̃ ] R+1 [(X ×R+1 ΠN) r (X̃ ×R+1 ΠN)]] ×R+1 1√

2

⎡⎢⎢⎢⎢⎣
IN ΠN

−IN ΠN

⎤⎥⎥⎥⎥⎦
=

1√
2
⋅
⎡⎢⎢⎢⎢⎣
⎛⎝X ×R+1

⎡⎢⎢⎢⎢⎣
IN

−IN
⎤⎥⎥⎥⎥⎦
⎞⎠ r

⎛⎝X̃ ×R+1
⎡⎢⎢⎢⎢⎣
IN

−IN
⎤⎥⎥⎥⎥⎦
⎞⎠
⎤⎥⎥⎥⎥⎦

+ 1√
2
⋅
⎡⎢⎢⎢⎢⎣
⎛⎝X ×R+1 ⎛⎝

⎡⎢⎢⎢⎢⎣
ΠN

ΠN

⎤⎥⎥⎥⎥⎦ ⋅ΠN

⎞⎠⎞⎠ r

⎛⎝X̃ ×R+1 ⎛⎝
⎡⎢⎢⎢⎢⎣
ΠN

ΠN

⎤⎥⎥⎥⎥⎦ ⋅ΠN

⎞⎠⎞⎠
⎤⎥⎥⎥⎥⎦

=
1√
2
⋅
⎡⎢⎢⎢⎢⎣
⎛⎝X ×R+1

⎡⎢⎢⎢⎢⎣
IN

−IN
⎤⎥⎥⎥⎥⎦
⎞⎠ r

⎛⎝X̃ ×R+1
⎡⎢⎢⎢⎢⎣
IN

−IN
⎤⎥⎥⎥⎥⎦
⎞⎠
⎤⎥⎥⎥⎥⎦ +

1√
2
⋅
⎡⎢⎢⎢⎢⎣
⎛⎝X ×R+1

⎡⎢⎢⎢⎢⎣
IN

IN

⎤⎥⎥⎥⎥⎦
⎞⎠ r

⎛⎝X̃ ×R+1
⎡⎢⎢⎢⎢⎣
IN

IN

⎤⎥⎥⎥⎥⎦
⎞⎠
⎤⎥⎥⎥⎥⎦

=
1√
2
⋅
⎡⎢⎢⎢⎢⎣
⎛⎝X ×R+1

⎡⎢⎢⎢⎢⎣
2IN

0N×N

⎤⎥⎥⎥⎥⎦
⎞⎠ r

⎛⎝X̃ ×R+1
⎡⎢⎢⎢⎢⎣
2IN

0N×N

⎤⎥⎥⎥⎥⎦
⎞⎠
⎤⎥⎥⎥⎥⎦

=
2√
2
⋅ [[X R+1 OM1×...×MR×N ] r [X̃ R+1 OM1×...×MR×N ]] (D.44)

where we have again used (4.8), (4.9), and (4.10). and the obvious fact that [A r B] +[C r D] = [(A + C) r (B +D)]. Equation (D.44) shows that the last N “virtual snapshots”

(i.e., (R + 1)-mode slices) become zero. Therefore, we can skip the zero blocks and continue

the proof only for the non-zero part
√
2 ⋅ [X r X̃ ] ∈ CM1×...×2Mr×...×MR×N .

To proceed further, we need the following lemma:

Lemma D.8.1. Let X̄
(r)
= X ×1QH

M1
. . .×r−1QH

Mr−1
×r+1QH

Mr+1
. . .×RQH

MR
. Then, the following

identity is true X̃ ×1QH
M1

. . . ×r−1QH
Mr−1

×r+1QH
Mr+1

. . . ×RQH
MR
= X̄

(r)∗ ×r ΠMr .

Proof. The identity follows by expanding X̃ into X̃ = X ∗ ×1ΠM1
. . .×R ΠMR

. Using the rules

of n-mode products we can then simplify X̃ ×1QH
M1

. . .×r−1QH
Mr−1

×r+1QH
Mr+1

. . .×RQH
MR

into

X̃ ×1QH
M1

. . . ×r−1QH
Mr−1

×r+1QH
Mr+1

. . . ×RQH
MR

=X ∗ ×1 (QH
M1
⋅ΠM1

) . . . ×r−1 (QH
Mr−1

⋅ΠMr−1) ×r ΠMr ×r+1 (QH
Mr+1

⋅ΠMr+1) . . . ×R (QH
MR
⋅ΠMR

)
=X ∗ ×1QT

M1
. . . ×r−1QT

Mr−1
×r ΠMr ×r+1QT

Mr+1
. . . ×RQT

MR

= (X ×1QH
M1

. . . ×r−1QH
Mr−1

×r ΠMr ×r+1QH
Mr+1

. . . ×RQH
MR
)∗

=X̄
(r)∗ ×r ΠMr , (D.45)
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where we have used the fact that QH
p ⋅Πp = Q

T
p since Qp is left-Π-real. This concludes the

proof of the lemma.

Via Lemma D.8.1 it is easy to see that the multiplication of the remaining part
√
2⋅[X r X̃ ]

with QH
Mq

in all modes q = 1,2, . . . ,R, q ≠ r yields

√
2 ⋅ [X r X̃ ] ×1QH

M1
. . . ×r−1QH

Mr−1
×r+1QH

Mr+1
. . . ×RQH

MR
=
√
2 ⋅ [X̄ r X̄

∗ ×r ΠMr
] .

(D.46)

The final step for the computation of T (X (nc,r)) is the multiplication with QH
2Mr

in mode r.

Skipping the zero blocks for brevity, we obtain

T (X (nc,r)) =√2 ⋅ [X̄ r X̄
∗ ×r ΠMr

] ×r 1√
2

⎡⎢⎢⎢⎢⎣
IMr ΠMr−IMr ΠMr

⎤⎥⎥⎥⎥⎦
=
⎛⎝X̄ ×r

⎡⎢⎢⎢⎢⎣
IMr−IMr

⎤⎥⎥⎥⎥⎦
⎞⎠ + ⎛⎝X̄ ∗ ×r ⎛⎝

⎡⎢⎢⎢⎢⎣
ΠMr

ΠMr

⎤⎥⎥⎥⎥⎦ ⋅ΠMr

⎞⎠⎞⎠
=
⎛⎝X̄ ×r

⎡⎢⎢⎢⎢⎣
IMr−IMr

⎤⎥⎥⎥⎥⎦
⎞⎠ + ⎛⎝X̄ ∗ ×r

⎡⎢⎢⎢⎢⎣
IMr

IMr

⎤⎥⎥⎥⎥⎦
⎞⎠

= [(X̄ + X̄ ∗) r (−X̄ + X̄ ∗)]
= 2 ⋅ [Re{X̄} r Im{X̄}] (D.47)

which proves the theorem.

D.9. Derivation of the TS-SLS update rule

In this section we sketch the derivation of the update rule for the TS-SLS algorithm. Note

that it was first proposed in [RH07b], however, due to space limitations the derivation could

not be included there. We start with the cost function (11.47). For simplicity we only consider

r = 1. The first step is to expand the residual tensor R
(1)
k+1

in terms of the updates of the k-th

iteration ∆∆Sk, ∆∆U1,k, ∆∆U2,k, and ∆∆Ψ
(1)
k

. The expansion contains one “zero-th order”

term (i.e., not dependent on any of the update terms) equal to R
(1)
k

, linear terms for ∆∆Sk,

∆∆U1,k, ∆∆U2,k, and ∆∆Ψ
(1)
k

, and many higher-order terms which are the result of cross

products between the update terms. If we assume the updates to be small, all higher-order

terms can be neglected and we only consider the linear terms. We are left with

R
(1)
k+1
≈R

(1)
k
+∆∆Sk ×1 (J(1)1 ⋅U1,k) ×2 U2,k ×3 Ψ(1)k

−∆∆Sk ×1 (J(1)2 ⋅U1,k) ×2 U2,k
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+Sk ×1 (J(1)1 ⋅∆∆U1,k) ×2 U2,k ×3 Ψ(1)k
−Sk ×1 (J(1)2 ⋅∆∆U1,k) ×2 U2,k

+Sk ×1 (J(1)1 ⋅U1,k) ×2 ∆∆U2,k ×3 Ψ(1)k
−Sk ×1 (J(1)2 ⋅U1,k) ×2 ∆∆U2,k

+Sk ×1 (J(1)1 ⋅U1,k) ×2 U2,k ×3 ∆∆Ψ
(1)
k

, (D.48)

where U1,k = Û1 +∆U1,k, U2,k = Û2 +∆U2,k, Sk = Ŝ +∆Sk, and Ψ
(1)
k
= Ψ̂

(1)
LS +∆Ψ

(1)
k

.

In the next step we apply the vec-operator to transform the linear dependencies from (D.48)

into a canonical matrix-vector form. For the first two terms connected to ∆∆Sk we apply

property (4.20) and obtain

vec{∆∆Sk ×1 (J(1)1 ⋅U1,k) ×2 U2,k ×3 Ψ(1)k
−∆∆Sk ×1 (J(1)2 ⋅U1,k) ×2 U2,k}

=(Ψ(1)
k
⊗U2,k ⊗ (J(1)1 ⋅U1,k) − Id ⊗U2,k ⊗ (J(1)2 ⋅U1,k))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F
(1)
4

⋅vec{∆∆Sk} . (D.49)

For the second set of terms we first compute a one-mode unfolding and then reorder its

vectorized version via the definition of the permutation matrices from (4.11). We can write

vec{Sk ×1 (J(1)1 ⋅∆∆U1,k) ×2 U2,k ×3 Ψ(1)k
−Sk ×1 (J(1)2 ⋅∆∆U1,k) ×2 U2,k}

=P (1) ⋅ vec{J(1)1 ⋅∆∆U1,k ⋅ [Sk ×2 U2,k ×3 Ψ(1)k
](1) − J(1)2 ⋅∆∆U1,k ⋅ [Sk ×2 U2,k](1)}

=P (1) ⋅ ([Sk ×2 U2,k ×3 Ψ(1)k
]T(1) ⊗ J(1)1 − [Sk ×2 U2,k]T(1) ⊗ J(1)2 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F
(1)
2

⋅vec{∆∆U1,k} (D.50)

where in the second step we have used property (3.7). The two terms connected to ∆∆U2,k

are rewritten in a similar manner

vec{Sk ×1 (J(1)1 ⋅U1,k) ×2 ∆∆U2,k ×3 Ψ(1)k
−Sk ×1 (J(1)2 ⋅U1,k) ×2 ∆∆U2,k}

=P (2) ⋅ vec{∆∆U2,k ⋅ [Sk ×1 (J(1)1 ⋅U1,k) ×3 Ψ(1)k
](2) −∆∆U2,k ⋅ [Sk ×1 (J(1)2 ⋅U1,k)](2)}

=P (2) ⋅ ([Sk ×1 (J(1)1 ⋅U1,k) ×3 Ψ(1)k
]T(2) ⊗ IM2

− [Sk ×1 (J(1)2 ⋅U1,k)]T(2) ⊗ IM2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F
(1)
3

⋅vec{∆∆U2,k}

(D.51)
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Finally, the remaining term connected to ∆∆Ψ
(1)
k

becomes

vec{Sk ×1 (J(1)1 ⋅U1,k) ×2 U2,k ×3 ∆∆Ψ
(1)
k
}

=P (3) ⋅ vec{∆∆Ψ
(1)
k
⋅ [Sk ×1 (J(1)1 ⋅U1,k) ×2 U2,k](3)}

=P (3) ⋅ ([Sk ×1 (J(1)1 ⋅U1,k) ×2 U2,k]T(3) ⊗ Id)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F
(1)
1

⋅vec{∆∆Ψ
(1)
k
} . (D.52)

Therefore, collecting (D.49), (D.50), (D.51), and (D.52), we have the following first-order

expansion for the residual tensor

vec{R(1)
k+1
} ≈ vec{R(1)

k
} + [F (1)1 F

(1)
2 F

(1)
3 F

(1)
4
] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{∆∆Ψ
(1)
k
}

vec{∆∆U1,k}
vec{∆∆U2,k}
vec{∆∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D.53)

The next step is to realize that the cost function for TS-SLS is a sum of norms which can be

written as the norm of a vector containing the vectorized versions of R(1), ∆U1, ∆U2, and

∆S. Therefore, the cost function in the k-th iteration step can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{R(1)
k+1
}

κ
(1)
1 ⋅ vec{∆U1,k+1}

κ
(1)
2 ⋅ vec{∆U2,k+1}
κ
(1)
3 ⋅ vec{∆Sk+1}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{R(1)
k
}

κ
(1)
1 ⋅ vec{∆U1,k}

κ
(1)
2 ⋅ vec{∆U2,k}
κ
(1)
3 ⋅ vec{∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(1)
1 F

(1)
2 F

(1)
3 F

(1)
4

0 κ
(1)
1 ⋅ IM1⋅p1 0 0

0 0 κ
(1)
2 ⋅ IM2⋅p2 0

0 0 0 κ
(1)
3 ⋅ Ip1⋅p2⋅d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F

⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec{∆∆Ψ
(1)
k
}

vec{∆∆U1,k}
vec{∆∆U2,k}
vec{∆∆Sk}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (D.54)

where we have inserted (D.53) and the three update equations ∆U1,k+1 = ∆U1,k +∆∆U1,k,

∆U2,k+1 =∆U2,k +∆∆U2,k, and ∆Sk+1 =∆Sk +∆∆Sk.

Consequently, after linearization the resulting optimization problem is equivalent to mini-

mizing the norm of (D.54), which is a linear least squares problem that is readily solved via

the pseudo-inverse of F . This concludes the derivation for r = 1. For convenience, the update
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D.10. Proof of Proposition 12.3.1

matrices F
(1)
n , n = 1,2,3,4 are summarized again below.

F
(1)
1 = P (3) ⋅ ([(Ŝ +∆Sk) ×1 J(1)1 ⋅ (Û1 +∆U1,k) ×2 (Û2 +∆U2,k)]T(3) ⊗ Id)

F
(1)
2 = P (1) ⋅ ( [(Ŝ +∆Sk) ×2 (Û2 +∆U2,k) ×3 (Ψ̂(1)LS +∆Ψ

(1)
k
)]T(1) ⊗ J(1)1

− [(Ŝ +∆Sk) ×2 (Û2 +∆U2,k)]T(1) ⊗ J(1)2 )
F
(1)
3 = P (2) ⋅ ( [(Ŝ +∆Sk) ×1 J(1)1 (Û1 +∆U1,k) ×3 (Ψ̂(1)LS +∆Ψ

(1)
k
)]T(2) ⊗ IM2

− [(Ŝ +∆Sk) ×1 J(1)2 (Û1 +∆U1,k)]T(2) ⊗ IM2
)

F
(1)
4 = (Ψ̂(1)LS +∆Ψ

(1)
k
)⊗ (Û2 +∆U2,k)⊗ (J(1)1 (Û1 +∆U1,k))

− Id ⊗ (Û2 +∆U2,k)⊗ (J(1)2 (Û1 +∆U1,k)) .
The derivation for r = 2 proceeds in a similar manner. The resulting matrices F

(2)
n for

n = 1,2,3,4 are given by

F
(2)
1 = P (3) ⋅ ([(Ŝ +∆Sk) ×1 (Û1 +∆U1,k) ×2 J(2)1 ⋅ (Û2 +∆U2,k)]T(3) ⊗ Id)

F
(2)
2 = P (1) ⋅ ( [(Ŝ +∆Sk) ×2 J(2)1 ⋅ (Û2 +∆U2,k) ×3 (Ψ̂(2)LS +∆Ψ

(2)
k
)]T(1) ⊗ IM1

− [(Ŝ +∆Sk) ×2 J(2)2 ⋅ (Û2 +∆U2,k)]T(1) ⊗ IM1
)

F
(2)
3 = P (2) ⋅ ( [(Ŝ +∆Sk) ×1 (Û1 +∆U1,k) ×3 (Ψ̂(2)LS +∆Ψ

(2)
k
)]T(2) ⊗ J(2)1

− [(Ŝ +∆Sk) ×1 (Û1 +∆U1,k)]T(2) ⊗ J(2)2 )
F
(2)
4 = (Ψ̂(2)LS +∆Ψ

(2)
k
)⊗ (J(2)1 ⋅ (Û2 +∆U2,k))⊗ (Û1 +∆U1,k)

− Id ⊗ (J(2)2 ⋅ (Û2 +∆U2,k))⊗ (Û1 +∆U1,k) .

D.10. Proof of Proposition 12.3.1

We start by inserting Û s = U s +∆U s and T̂ r = T r +∆T r into (10.11). Then we obtain

[Û [s]]T(R+1) = [(T 1 +∆T 1)⊗ (T 2 +∆T 2)⊗ . . . (TR +∆TR)] ⋅ (U s +∆U s)

295



Appendix D. Proofs and derivations for Part III

= [T 1 ⊗ T 2 ⊗ . . .TR] ⋅U s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U s

+ [T 1 ⊗ T 2 ⊗ . . .TR] ⋅∆U s

+ [∆T 1 ⊗ T 2 ⊗ . . .TR] ⋅U s + . . . + [T 1 ⊗ T 2 ⊗ . . .∆TR] ⋅U s +O{∆2} , (D.55)

since all terms that contain more than one perturbation term can be absorbed into O{∆2}.
The first term in (D.55) represents the exact signal subspace (cf. Corollary D.3.2), hence

the remaining terms are the first order expansion of [∆Û [s]]T(R+1). As the first term of this

expansion already agrees with Proposition 12.3.1, we still need to show that for the remaining

terms we have for r = 1,2, . . . ,R

[T 1 ⊗ . . .⊗∆T r ⊗ . . .TR] ⋅U s = [T 1 ⊗ . . .⊗ (U [n]r ⋅Γ[n]r ⋅U [s]Hr )⊗ . . .TR] ⋅U s +O{∆2} .
(D.56)

As a first step, we expand the left-hand side of (D.56) by applying Corollary D.3.2

[T 1 ⊗ . . .⊗∆T r ⊗ . . .TR] ⋅U s = [T 1 ⊗ . . .⊗∆T r ⊗ . . .TR] ⋅ [T 1 ⊗ . . .⊗ T r ⊗ . . .TR] ⋅U s

= [(T 1 ⋅ T 1)⊗ . . .⊗ (∆T r ⋅ T r)⊗ . . . (TR ⋅ TR)] ⋅U s

= [T 1 ⊗ . . .⊗ (∆T r ⋅ T r)⊗ . . .TR] ⋅U s, (D.57)

where we have used the fact that the matrices T r are projection matrices and hence idempotent,

i.e., T r ⋅T r = T r. Hence, what remains to be shown is that ∆T r ⋅T r = U
[n]
r ⋅Γ[n]r ⋅U [s]Hr +O{∆2}.

Since T̂ r = Û
[s]
r ⋅ Û [s]Hr and Û

[s]
r = U

[s]
r +∆U [s]r , a first order expansion for ∆T r is obtained via

T̂ r = (U [s]r +∆U [s]r ) ⋅ (U [s]Hr +∆U [s]Hr )
= T r +U [s]r ⋅∆U [s]Hr +∆U [s]r ⋅U [s]Hr +O{∆2}

⇒∆T r = U
[s]
r ⋅∆U [s]Hr +∆U [s]r ⋅U [s]Hr +O{∆2} , (D.58)

where in general we have ∆U
[s]
r = U

[n]
r ⋅ Γ[n]r +U [s]r ⋅ Γ[s]r +O{∆2} (cf. (12.10)). Using this

expansion in (D.58) we obtain

∆T r ⋅ T r = U
[s]
r ⋅ (U [n]r ⋅Γ[n]r +U [s]r ⋅Γ[s]r )H ⋅ T r + (U [n]r ⋅Γ[n]r +U [s]r ⋅Γ[s]r ) ⋅U [s]Hr ⋅ T r +O{∆2}

= U [s]r ⋅Γ[n]Hr ⋅U [n]Hr ⋅ T r +U [s]r ⋅Γ[s]Hr ⋅U [s]Hr ⋅ T r

+U [s]r ⋅Γ[s]r ⋅U [s]Hr ⋅ T r +U [n]r ⋅Γ[n]r ⋅U [s]Hr ⋅ T r +O{∆2}
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= U [s]r ⋅Γ[n]Hr ⋅U [n]Hr ⋅ T r´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0Mr−pr×Mr

+U [s]r ⋅ (Γ[s]r +Γ[s]Hr )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0pr×pr

⋅U [s]Hr ⋅ T r +U [n]r ⋅Γ[n]r ⋅U [s]Hr ⋅ T r´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U
[s]H
r

+O{∆2}
= U [n]r ⋅Γ[n]r ⋅U [s]Hr +O{∆2} , (D.59)

which is the desired result. Note that Γ
[s]
r +Γ[s]Hr = 0pr×pr follows from the fact that Γ

[s]
r is a

skew-Hermitian matrix. This property is apparent from its definition (12.12), which we restate

here for convenience

Γ[s]r =Dr ⊙ (U [s]Hr ⋅ [N ](r) ⋅V [s]r ⋅Σ[s]r +Σ[s]r ⋅V [s]Hr ⋅ [N ]H(r) ⋅U [s]r )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ̄
[s]
r

. (D.60)

By its definition, Γ̄
[s]
r = Γ̄

[s]H
r . Moreover, since [Dr](k,ℓ) = 1

σ
(r)2

ℓ
−σ
(r)2

k

for k ≠ ℓ we have

[Dr](k,ℓ) = − [Dr](ℓ,k) and hence Dr = −DH
r . Finally, the product of a Hermitian and a

skew-Hermitian matrix is skew-Hermitian again.

D.11. Sketch of derivation of (12.20)

The first-order expansion for 1-D Standard ESPRIT shown in (12.20) is essentially based on

three steps: (1) the perturbation of µk in terms of λk = eµk ; (2) the perturbation of λk in

terms Ψ; (3) the perturbation of Ψ in terms of the signal subspace estimation error ∆U s.

For the first step we compute a Taylor series expansion of λ = eµ at a particular point

λk = e
µk . We obtain

e(µk+∆µk) = eµk + ∆µk ⋅ eµk +O{∆2}
≈ eµk±

λk

⋅(1 + ∆µk). (D.61)

Consequently, for a slightly perturbed eigenvalue λk +∆λk we can write up to first order

λk +∆λk ≈ λk ⋅ (1 + ∆µk)
∆λk

λk

≈ 0 + ∆µk

⇒∆µk ≈ Im{∆λk

λk

} . (D.62)

For the second step [LLV93] borrows a result from [LT78] which provides a first-order expan-
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sion of the eigendecomposition. Let Ψ =Q ⋅Λ ⋅Q−1 be the eigendecomposition of Ψ in terms

of the matrix of eigenvectors Q and the diagonal matrix of eigenvalues Λ = diag {[λ1, . . . , λd]}.
Then in [LT78] it is shown that the eigendecomposition of a perturbed matrix Ψ+∆Ψ can be

expressed as

Ψ +∆Ψ =Q ⋅Λ ⋅Q−1 +Q ⋅∆Λ ⋅Q−1 +O{∆2} , (D.63)

i.e., the perturbation ∆Ψ has a first-order effect only on the eigenvalues, the perturbation

term for the eigenvectors is already a second-order term. Rearranging (D.63) we can express

∆λk via

∆Λ = Q−1±
P

⋅∆Ψ ⋅Q +O{∆2}
⇒∆λk = p

T
k ⋅∆Ψ ⋅ qk +O{∆2} , (D.64)

where in the last step we have used the fact that Λ is diagonal and we have introduced qk and

pTk as the k-th column and the k-th row of Q and P =Q−1, respectively.

For the third step we consider the shift invariance equations in terms of the estimated

signal subspace Û s = U s +∆U s, where ∆U s represents the estimation error. We also write

Ψ̂LS =Ψ+∆Ψ and try to find a first order expansion for ∆Ψ by rearranging the shift invariance

equations. We obtain [RH89a]

J1 ⋅ (U s +∆U s) ⋅ (Ψ +∆Ψ) ≈ J2 ⋅ (U s +∆U s)
J1 ⋅U s ⋅Ψ + J1 ⋅∆U s ⋅Ψ + J1 ⋅U s ⋅∆Ψ ≈ J2 ⋅U s + J2 ⋅∆U s

J1 ⋅∆U s ⋅Ψ + J1 ⋅U s ⋅∆Ψ ≈ J2 ⋅∆U s

⇒∆Ψ ≈ (J1 ⋅U s)+ ⋅ (J2 ⋅∆U s − J1 ⋅∆U s ⋅Ψ) (D.65)

where the ≈ sign represents equality up to first order term and hence all second order terms

have been neglected. Also, in the third line we have canceled two terms by exploiting the fact

that J1 ⋅U s ⋅Ψ = J2 ⋅U s.

Combining (D.62), (D.64), and (D.65), we obtain

∆µk ≈ Im{pTk ⋅ (J1 ⋅U s)+ (J2 ⋅∆U s − J1 ⋅∆U s ⋅Ψ) ⋅ qk/λk} (D.66)

Equation (D.66) can be simplified by multiplying out the last bracket. Since Ψ ⋅ qk = λk ⋅ qk
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we can write

∆µk ≈ Im{pTk ⋅ (J1 ⋅U s)+ (J2 ⋅∆U s ⋅ qk/λk − J1 ⋅∆U s ⋅ qk ⋅ λk/λk)}
≈ Im{pTk ⋅ (J1 ⋅U s)+ (J2/λk − J1) ⋅∆U s ⋅ qk} , (D.67)

which is the desired result.

D.12. Proof of Theorem 12.4.1

For R-D Standard ESPRIT, the explicit first-order expansion of the estimation error for the k-

th spatial frequency in the r-th mode is given by (12.20), which we restate here for convenience

∆µ
(r)
k
= Im{p(r)T

k
⋅ (J̃(r)1 ⋅U s)+ ⋅ [J̃(r)2 /λ(r)k

− J̃(r)1 ] ⋅∆U s ⋅ q(r)k
} +O {∆2} (D.68)

Note that inside the Im{.} operator we have a linear form in ∆U s, which is itself a linear form

in the perturbation N . Therefore, we can write

∆µ
(r)
k
= Im{r(r)T

k
⋅ vec{∆U s}} +O {∆2} = Im{r(r)T

k
⋅Wmat ⋅ vec{N}} +O {∆2} (D.69)

Here r
(r)T
k
= q
(r)T
k
⊗(p(r)T

k
⋅ (J̃(r)1 ⋅U s)+ ⋅ [J̃(r)2 /λ(r)k

− J̃(r)1 ]) follows directly by applying prop-

erty (3.7) for matrix product linear forms.

Moreover, Wmat = (Σ−1s ⋅V T
s ) ⊗ (Un ⋅UH

n ) follows by applying the same rule to the first

order expansion of ∆U s = Un ⋅UH
n ⋅N ⋅V s ⋅Σ−1s (cf. (12.4)).

In order to expand E{(∆µ
(r)
k
)2} using (D.69), we observe that for arbitrary complex vectors

z1,z2 we have

Im{zT1 ⋅ z2} = Im{z1}T ⋅Re{z2} +Re{z1}T ⋅ Im{z2} and hence

Im{zT1 ⋅ z2}2 = Im{z1}T ⋅Re{z2} ⋅Re{z2}T ⋅ Im{z1} +Re{z1}T ⋅ Im{z2} ⋅ Im{z2}T ⋅Re{z1}
+ Im{z1}T ⋅Re{z2} ⋅ Im{z2}T ⋅Re{z1} +Re{z1}T ⋅ Im{z2} ⋅Re{z2}T ⋅ Im{z1}

(D.70)

Using (D.69) in E{(∆µ
(r)
k
)2} and applying (D.70) for zT1 = r

(r)T
k
⋅Wmat and z2 = vec{N} we

find

E{(∆µ
(r)
k
)2} = E{Im{r(r)Tk

⋅Wmat} ⋅Re{vec{N}} ⋅Re{vec{N}}T ⋅ Im{WT
mat ⋅ r(r)k

}}
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+E{Re{r(r)Tk
⋅Wmat} ⋅ Im{vec{N}} ⋅ Im{vec{N}}T ⋅Re{WT

mat ⋅ r(r)k
}}

+E{Im{r(r)Tk
⋅Wmat} ⋅Re{vec{N}} ⋅ Im{vec{N}}T ⋅Re{WT

mat ⋅ r(r)k
}}

+E{Re{r(r)Tk
⋅Wmat} ⋅ Im{vec{N}} ⋅Re{vec{N}}T ⋅ Im{WT

mat ⋅ r(r)k
}}
(D.71)

Since the only random quantity in (D.71) is the noise matrix N we can move the quantities

related toWmat and rk out of the expectation operator. We are then left with the covariance

matrices of the real part and the imaginary part of the noise, respectively, as well as with the

cross-covariance matrix between the real and the imaginary part. However, since the noise is

assumed to be circularly symmetric (cf. Section 9.2.4), zero mean, and i.i.d., we obtain

E{Re{vec{N}} ⋅Re{vec{N}}T} = E{Im{vec{N}} ⋅ Im{vec{N}}T} = σ2
n

2
⋅ IM ⋅N (D.72)

E{Re{vec{N}} ⋅ Im{vec{N}}T} = E{Im{vec{N}} ⋅Re{vec{N}}T} = 0M ⋅N×M ⋅N (D.73)

Note that Gaussianity is not needed for these properties to hold. Consequently, the MSE

expressions are still valid if the noise is not Gaussian, as long as it is still circularly symmetric,

zero mean, and i.i.d. With these results, the MSE simplifies into

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ Im{r(r)T

k
⋅Wmat} ⋅ Im{WT

mat ⋅ r(r)k
} + σ2

n

2
⋅Re{r(r)T

k
⋅Wmat} ⋅Re{WT

mat ⋅ r(r)k
}

=
σ2
n

2
⋅ ∥WT

mat ⋅ r(r)k
∥2
2

(D.74)

which is the desired result.

The procedure for 2-D Standard Tensor-ESPRIT is in fact quite similar. The first step is

to express the estimation error in µ
(r)
k

in terms of the perturbation vec{N} = vec{[N ]T(3)}
(cf. (9.16)). This expression takes the form

∆µ
(r)
k
= Im{r(r)T

k
⋅ vec{[∆Û [s]]T(R+1)}} +O {∆2} = Im{r(r)T

k
⋅W ten ⋅ vec{N}} +O {∆2}

(D.75)

since [∆Û [s]]T(R+1) depends linearly on vec{N}. Due to the fact that (D.75) has the same

form as (D.69), the second step to expand the MSE expressions follows the same lines as for
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R-D Standard ESPRIT, which immediately shows that the MSE becomes

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ ∥WT

ten ⋅ r(r)k
∥2
2

(D.76)

Therefore, the final ingredient is finding an explicit expression for W ten which satisfies

[∆Û [s]]T(3) =W ten ⋅ vec{N} +O {∆2} . (D.77)

Recall from Proposition 12.3.1 that for R = 2, the HOSVD-based signal subspace estimation

error [∆Û [s]](R+1) can be expanded into

[∆Û [s]]T(3) = (T 1 ⊗ T 2) ⋅∆U s + ([∆U [s]1 ⋅U [s]H1 ]⊗ T 2) ⋅U s +(T 1 ⊗ [∆U [s]2 ⋅U [s]H2 ]) ⋅U s +O {∆2} ,
(D.78)

where ∆U s, ∆U
[s]
1 , and ∆U

[s]
2 are given by

∆U s = Un ⋅UH
n ⋅N ⋅V s ⋅Σ−1s = V [n]∗3 ⋅V [n]T3 ⋅N ⋅U [s]∗3 ⋅Σ[s]−13 and (D.79)

∆U [s]r = U [n]r ⋅U [n]Hr ⋅ [N ](r) ⋅V [s]r ⋅Σ[s]−1r for r = 1,2. (D.80)

The first term in (D.78) is easily vectorized by applying property (3.7) for matrix product

linear forms which yields the first term of W ten as

vec{(T 1 ⊗ T 2) ⋅∆U s} = vec{(T 1 ⊗ T 2) ⋅V [n]∗3 ⋅V [n]T3 ⋅N ⋅U [s]∗3 ⋅Σ[s]−13 }
= (U [s]∗3 ⋅Σ[s]−13 )T ⊗ [(T 1 ⊗ T 2) ⋅V [n]∗3 ⋅V [n]T3 ] ⋅ vec{N}
= (Σ[s]−13 ⋅U [s]H3 )⊗ [(T 1 ⊗ T 2) ⋅V [n]∗3 ⋅V [n]T3 ] ⋅ vec{N} (D.81)

However, for the second term in (D.78) we get

vec{([U [n]1 ⋅U [n]H1 ⋅ [N ](1) ⋅V [s]1 ⋅Σ[s]−11 ⋅U [s]H1 ]⊗ T 2) ⋅U s}
= (UT

s ⊗ IM) ⋅ vec{[U [n]1 ⋅U [n]H1 ⋅ [N ](1) ⋅V [s]1 ⋅Σ[s]−11 ⋅U [s]H1 ]⊗ T 2} (D.82)

by inserting (D.80) for ∆U
[s]
1 . To proceed we need to vectorize a Kronecker product. This is
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discussed in Section 3.1.2. Applying Proposition 3.1.1 we obtain

(UT
s ⊗ IM) ⋅ vec{[U [n]1 ⋅U [n]H1 ⋅ [N ](1) ⋅V [s]1 ⋅Σ[s]−11 ⋅U [s]H1 ]⊗ T 2}

= (UT
s ⊗ IM) ⋅ T̄ 2 ⋅ vec{[U [n]1 ⋅U [n]H1 ⋅ [N ](1) ⋅V [s]1 ⋅Σ[s]−11 ⋅U [s]H1 ]}

= (UT
s ⊗ IM) ⋅ T̄ 2 ⋅ [(V [s]1 ⋅Σ[s]−11 ⋅U [s]H1 )T ⊗ (U [n]1 ⋅U [n]H1 )]vec{[N ](1)} (D.83)

where the matrix T̄ 2 is constructed from the columns of T 2 given by t2,m for m = 1,2, . . . ,M2

in the following manner

T̄ 2 = IM1
⊗
⎡⎢⎢⎢⎢⎢⎢⎣
IM1
⊗ t2,1
⋮

IM1
⊗ t2,M2

⎤⎥⎥⎥⎥⎥⎥⎦
(D.84)

The final step is to rearrange the elements of vec{[N ](1)} so that they appear in the same

order as in vec{N}. However, since N = [N ]T(3), this can easily be achieved in the following

manner

vec{[N ](1)} =KM2×(M1⋅N) ⋅ vec{N} (D.85)

where KM2×(M1⋅N) is the commutation matrix (cf. equation (4.16)). This completes the

derivation of the second term of W ten. The third term is obtained in a similar manner.

In this case, no permutation is needed, since vec{[N ](2)} = vec{[N ]T(3)} = vec{N} (cf.

equation (4.14)).

D.13. Proof of Theorem 12.4.2

For simplicity, we show the proof for 1-D Unitary ESPRIT only. However, the ideas used

in the proof carry over to the R-D case straightforwardly. Moreover, since the real-valued

transformation used for R-D Unitary Tensor-ESPRIT is in fact the same (except for a specific

structure of the left-Π-real matrices, which is irrelevant for the proof), it also applies to the

tensor case.

The theorem may seem obvious at first sight, as the real-valued transformation should

not affect the performance at all. However, to show it rigorously, the only starting point

we have available is the first-order perturbation expansion of the shift invariance equations.

Since the parameters are extracted from the real-valued shift invariance equations in a different
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manner as in the complex-valued case (e.g., using the arctangent function), for a rigorous proof

we need to develop a perturbation expansion for the real-valued shift invariance equations

used in 1-D Unitary ESPRIT and then show its equivalence to (12.32). To this end, let

X
(fba)
0 ∈ C

M×2N be the forward-backward averaged measurement matrix according to (12.31)

and let ϕ(X(fba)0 ) = QH
M ⋅X(fba)0 ⋅Q2N ∈ R

M×2N be the transformed real-valued measurement

matrix. Their SVDs can be expressed as

X
(fba)
0 = [U (fba)s U

(fba)
n ] ⋅ ⎡⎢⎢⎢⎢⎣

Σ
(fba)
s 0

0 0

⎤⎥⎥⎥⎥⎦ ⋅ [V
(fba)
s V

(fba)
n ]H (D.86)

ϕ(X(fba)0 ) = [Es En] ⋅ ⎡⎢⎢⎢⎢⎣
Σs
(ϕ) 0

0 0

⎤⎥⎥⎥⎥⎦ ⋅ [W s W n]H .

Since ϕ(X(fba)0 ) =QH
M ⋅X(fba)0 ⋅Q2N and the matrices Qp are unitary, it is easy to see that an

SVD of ϕ(X(fba)0 ) is given by choosing

Es =Q
H
M ⋅U (fba)s , En =Q

H
M ⋅U (fba)n , Σs

(ϕ)
=Σ(fba)s (D.87)

W s =Q
H
2N ⋅V (fba)s , W n =Q

H
2N ⋅V (fba)n .

The shift invariance equation for 1-D Unitary ESPRIT can be written as

K1 ⋅Es ⋅Υ =K2 ⋅Es (D.88)

whereΥ =R⋅Ω⋅R−1 andΩ = diag {[ω1, . . . , ωd]} with ωk = tan(µk/2), k = 1,2, . . . , d. Moreover,

K1 andK2 are the real-values selection matrices (cf. (11.9) and (11.10)) which can be written

as

K1 = 2 ⋅Re{QH
M(sel) ⋅ J2 ⋅QM} =QH

M(sel) ⋅ (J1 + J2) ⋅QM (D.89)

K2 = 2 ⋅ Im{QH
M(sel) ⋅ J2 ⋅QM} =  ⋅QH

M(sel) ⋅ (J1 − J2) ⋅QM . (D.90)

The second form follows from expanding the real part and the imaginary part according to

2 ⋅ Re{x} = x + x∗ and 2 ⋅ Im{x} = −x + x∗. The conjugated term QT
M(sel) ⋅ J2 ⋅Q∗ can be

simplified into QH
M(sel) ⋅ J1 ⋅Q using the fact that J1 =ΠM(sel) ⋅ J2 ⋅ΠM (since the array must

be centro-symmetric) and the fact that Q∗p =Πp ⋅Qp (since Qp is left-Π-real).

The complex-valued shift invariance equation for the forward-backward averaged data has
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the following form

J1 ⋅U (fba)s ⋅Ψ = J2 ⋅U (fba)s , (D.91)

where Ψ =Q(fba) ⋅Λ ⋅Q(fba)−1 , Λ = diag {[λ1, . . . , λd]} with λk = e
µk , k = 1,2, . . . , d.

Before we proceed, we require the following two lemmas:

Lemma D.13.1. The following identites are satisfied

(J1 + J2) ⋅U (fba)s = J1 ⋅U (fba)s ⋅ Ψ̆ (D.92)

(J1 − J2) ⋅U (fba)s = J2 ⋅U (fba)s ⋅ Ψ̊, (D.93)

where Ψ̆ = Id+Ψ =Q(fba) ⋅(Id +Λ) ⋅Q(fba)−1 and Ψ̊ = −Id+Ψ−1 =Q(fba) ⋅(−Id +Λ−1) ⋅Q(fba)−1.
Proof. The identities follow straightforwardly from J1 ⋅U (fba)s ⋅Ψ = J2 ⋅U (fba)s . For the first

identity we simply add J1 ⋅U (fba)s to both sides of the equation and then factor out the common

terms. For the second identity we subtract J1 ⋅U (fba)s , factor out the common terms, and finally

replace J1 ⋅U (fba)s by J2 ⋅U (fba)s ⋅Ψ−1.
Lemma D.13.2. The solution Ψ to (D.91) and the solution Υ to (D.88) have the same eigen-

vectors, i.e., Q(fba) =R. Moreover, their eigenvalues are related as ωk = 
1−λk

1+λk
or equivalently

λk =
1+ωk

1−ωk
.

Proof. The lemma follows by performing the steps that were used in the derivation for Unitary

ESPRIT to transform the complex-valued shift invariance equation into the real-valued shift

invariance equation ([HN95, HRD08]) in the reverse order. Starting from Υ = (K1 ⋅Es)+ ⋅K2 ⋅
Es and replacing Es with the help of (D.87) and Kn with the help of (D.89) and (D.90) we

get

Υ = (QH
M(sel) ⋅ (J1 + J2) ⋅QM ⋅QH

M ⋅U (fba)s )+ ⋅  ⋅QH
M(sel) ⋅ (J1 − J2) ⋅QM ⋅QH

M ⋅U (fba)s

= ((J1 + J2) ⋅U (fba)s )+ ⋅  ⋅ (J1 − J2) ⋅U (fba)s

= (J1 ⋅U (fba)s ⋅ Ψ̆)+ ⋅  ⋅ J2 ⋅U (fba)s ⋅ Ψ̊
=  ⋅ Ψ̆−1 ⋅ (J1 ⋅U (fba)s )+ ⋅ J2 ⋅U (fba)s ⋅ Ψ̊
=  ⋅ Ψ̆−1 ⋅Ψ ⋅ Ψ̊
=  ⋅Q(fba) ⋅ (Id +Λ)−1 ⋅Q(fba)−1 ⋅Q(fba) ⋅Λ ⋅Q(fba)−1 ⋅Q(fba) ⋅ (−Id +Λ−1) ⋅Q(fba)−1
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=  ⋅Q(fba) ⋅ (Id +Λ)−1 ⋅ (Id −Λ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
diag{[ 1−λk

1+λk
]
k=1,2,...,d

}
⋅Q(fba)−1

=Q(fba) ⋅Ω ⋅Q(fba)−1 , (D.94)

where we have used Lemma D.13.1 in the second step.

Since the real-valued shift-invariance equation in (D.88) has the same algebraic form as its

complex-valued counterpart (D.91), the same arguments can be applied to develop a first-order

perturbation expansion. In fact, following the three steps discussed in Appendix D.11, we find

that the second step (cf. (D.64)) and the third step (cf. (D.65)) lead to the same result (where

J1,J2,U s, and Ψ are consistently exchanged by K1,K2,Es, and Υ, respectively). For the

first step we need a Taylor series expansion of ωk = tan(µk/2) which is given by

ωk +∆ω ≈ tan(µk/2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ωk

+∆µ ⋅ (tan2(µk/2)
2

+ 1

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ω2
k
+1

2

⇒∆µ ≈∆ω ⋅ 2

ω2
k
+ 1 . (D.95)

Combining (D.95) with the corresponding real-valued expressions for (D.64) and (D.65) we

obtain

∆µk = p
(fba)T
k

⋅ (K1 ⋅Es)+ ⋅ (K2 − ωk ⋅K1) ⋅∆Es ⋅ q(fba)k
⋅ 2

ω2
k
+ 1 (D.96)

where q
(fba)
k

is the k-th column of Q(fba) and p(fba)T
k

is the k-th row of P (fba) =Q(fba)−1 . More-

over, the perturbation of the real-valued subspace Es is expanded in terms of the transformed

noise contribution ϕ(N (fba)) =QH
M ⋅N (fba) ⋅Q2N as

∆Es = En ⋅EH
n ⋅ ϕ(N (fba)) ⋅W s ⋅Σ(ϕ)−1s . (D.97)

Inserting (D.97) into (D.96) and applying the identities (D.87) as well as (D.89) and (D.90)

we obtain

∆µk =p
(fba)T
k

⋅ ((J1 + J2) ⋅U (fba)s )+ ⋅ ((J1 − J2) − ωk(J1 + J2)) ⋅U (fba)n ⋅U (fba)Hn

⋅N (fba) ⋅V (fba)s ⋅Σ(fba)−1s ⋅ q(fba)
k
⋅ 2

ω2
k
+ 1
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=p
(fba)T
k

⋅ ((J1 + J2) ⋅U (fba)s )+ ⋅ ((J1 − J2) − ωk(J1 + J2)) ⋅∆U (fba)s ⋅ q(fba)
k
⋅ 2

ω2
k
+ 1 ,
(D.98)

where ∆U
(fba)
s = U

(fba)
n ⋅U (fba)Hn ⋅N (fba) ⋅V (fba)s ⋅Σ(fba)−1s . To simplify (D.98) further, consider

the term ((J1 − J2) − ωk(J1 + J2)) first. Using the relation ωk = 
1−λk

1+λk
from Lemma D.13.2

we can rewrite this term as

 ⋅ (J1 − J2) −  ⋅ 1 − λk

1 + λk

⋅ (J1 + J2) =  ⋅ J1 ⋅ (1 − 1 − λk

1 + λk

) −  ⋅ J2 ⋅ (1 + 1 − λk

1 + λk

)
=  ⋅ J1 ⋅ 2 ⋅ λk

1 + λk

−  ⋅ J2 ⋅ 2

1 + λk

=  ⋅ (J1 ⋅ λk − J2) ⋅ 2

1 + λk

. (D.99)

Moreover, the term 2
ω2
k
+1

can be expressed in terms of λk via Lemma D.13.2. We obtain

2

ω2
k
+ 1 =

2

(1−λk

1+λk
)2 + 1 =

2 ⋅ (λk + 1)2−(λk − 1)2 + (λk + 1)2
=
2 ⋅ (λk + 1)2

4λk

=
(λk + 1)2

2λk

. (D.100)

Inserting (D.99) and (D.100) into (D.98) and replacing (J1 + J2) ⋅U (fba)s via (D.92) we get

∆µk = ⋅ p(fba)Tk
⋅ Ψ̆−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p
(fba)T

k
⋅(1+λk)−1

⋅(J1 ⋅U (fba)s )+ ⋅ (J1 ⋅ λk − J2) ⋅∆U (fba)s ⋅ q(fba)
k
⋅ 2

1 + λk

⋅ (λk + 1)2
2λk

= ⋅ p(fba)T
k

⋅ 1

1 + λk

⋅ (J1 ⋅U (fba)s )+ ⋅ (J1 ⋅ λk − J2) ⋅∆U (fba)s ⋅ q(fba)
k
⋅ (λk + 1)

λk

= ⋅ p(fba)T
k

⋅ (J1 ⋅U (fba)s )+ ⋅ (J1 − J2/λk) ⋅∆U (fba)s ⋅ q(fba)
k
⋅ λk

1 + λk

⋅ λk + 1
λk

= −  ⋅ p(fba)T
k

⋅ (J1 ⋅U (fba)s )+ ⋅ (J2/λk − J1) ⋅∆U (fba)s ⋅ q(fba)
k

, (D.101)

where p
(fba)T
k

⋅ Ψ̆−1 = p(fba)T
k

⋅ (1 + λk)−1 follows because Ψ̆ has the eigendecomposition Ψ̆ =

Q(fba) ⋅ (Id +Λ) ⋅P (fba) where P (fba) =Q(fba)−1 and hence Ψ̆
−1
=Q(fba) ⋅ (Id +Λ)−1 ⋅P (fba).

As a final step we notice that (D.101) must be real-valued since we have started from the

purely real-valued expansion (D.96) and only used equivalence transforms to arrive at (D.101).

However, if − ⋅ z ∈ R for z ∈ C this implies that Re{z} = 0 and hence − ⋅ z = Im{z}. Conse-
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quently, (D.101) can also be written as

∆µk = Im{p(fba)Tk
⋅ (J1 ⋅U (fba)s )+ ⋅ (J2/λk − J1) ⋅∆U (fba)s ⋅ q(fba)

k
} . (D.102)

Obviously, (D.102) is the same as the first-order expansion for FBA-ESPRIT shown in (12.32).

This concludes the proof of the theorem.

D.14. Proof of Theorem 12.4.3

As pointed out in Section 12.4.4, the inclusion of Forward-Backward-Averaging leads to a very

similar model, where all quantities originating from the noise-free observation X0 (or X 0) are

replaced by the corresponding quantities forX
(fba)
0 (or X

(fba)
0 ). This also applies to large parts

of the derivation of the MSE, which can be performed in a quite similar manner as shown in

the proof of Theorem 12.4.1.

For instance, for R-D Standard ESPRIT with Forward-Backward-Averaging, we arrive at a

relation similar to (D.71) which reads as

E{(∆µ
(r)
k
)2}

= E{Im{r(r)(fba)Tk
⋅W (fba)

mat } ⋅Re{vec{N (fba)}} ⋅Re{vec{N (fba)}}T ⋅ Im{W (fba)T
mat ⋅ r(r)(fba)

k
}}

+E{Re{r(r)(fba)Tk
⋅W (fba)

mat } ⋅ Im{vec{N (fba)}} ⋅ Im{vec{N (fba)}}T ⋅Re{W (fba)T
mat ⋅ r(r)(fba)

k
}}

+E{Im{r(r)(fba)Tk
⋅W (fba)

mat } ⋅Re{vec{N (fba)}} ⋅ Im{vec{N (fba)}}T ⋅Re{W (fba)T
mat ⋅ r(r)(fba)

k
}}

+E{Re{r(r)(fba)Tk
⋅W (fba)

mat } ⋅ Im{vec{N (fba)}} ⋅Re{vec{N (fba)}}T ⋅ Im{W (fba)T
mat ⋅ r(r)(fba)

k
}}

(D.103)

At this point, the derivation has to be extended to take into account the effect of the Forward-

Backward-Averaging onto the noise. In particular, we need the covariance matrices of the

real part and the imaginary part of the augmented noise matrix, respectively, as well as the

cross-covariance matrix between the real part and the imaginary part.

To this end, we can express vec{N (fba)} as
vec{N (fba)} = vec{[N , ΠM ⋅N∗ ⋅ΠN]} = ⎡⎢⎢⎢⎢⎣

vec{N}(ΠN ⊗ΠM) ⋅ vec{N∗}
⎤⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎣
vec{Re{N}}

ΠM ⋅N ⋅ vec{Re{N}}
⎤⎥⎥⎥⎥⎦ +  ⋅

⎡⎢⎢⎢⎢⎣
vec{Im{N}}

−ΠM ⋅N ⋅ vec{Im{N}}
⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
IM ⋅N

ΠM ⋅N

⎤⎥⎥⎥⎥⎦ ⋅ vec{Re{N}} +  ⋅
⎡⎢⎢⎢⎢⎣
IM ⋅N

−ΠM ⋅N

⎤⎥⎥⎥⎥⎦ ⋅ vec{Im{N}} (D.104)

Equation (D.104) allows us to express the real part and the imaginary part of N (fba) in terms

of the real part and the imaginary part of N , respectively. The first immediate observation is

that the real part and the imaginary part of the noise matrix N do not mix and hence

E{Re{vec{N (fba)}} ⋅ Im{vec{N (fba)}}T}
=E{Im{vec{N (fba)}} ⋅Re{vec{N}(fba)}T} = 0M ⋅N×M ⋅N (D.105)

However, for the covariance matrix of the real part of N (fba) we obtain

E{Re{vec{N (fba)}} ⋅Re{vec{N (fba)}}T}
=

⎡⎢⎢⎢⎢⎣
IM ⋅N

ΠM ⋅N

⎤⎥⎥⎥⎥⎦ ⋅E{Re{vec{N}} ⋅Re{vec{N}}
T}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ2
n
2
⋅IM ⋅N×M ⋅N

⋅
⎡⎢⎢⎢⎢⎣
IM ⋅N

ΠM ⋅N

⎤⎥⎥⎥⎥⎦
T

=
σ2
n

2
⋅
⎡⎢⎢⎢⎢⎣
IM ⋅N ΠM ⋅N

ΠM ⋅N IM ⋅N

⎤⎥⎥⎥⎥⎦ =
σ2
n

2
⋅ (I2MN +Π2MN) (D.106)

Likewise, the covariance matrix of the imaginary part of N (fba) becomes

E{Im{vec{N (fba)}} ⋅ Im{vec{N (fba)}}T} = σ2
n

2
⋅
⎡⎢⎢⎢⎢⎣
IM ⋅N −ΠM ⋅N

−ΠM ⋅N IM ⋅N

⎤⎥⎥⎥⎥⎦
=
σ2
n

2
⋅ (I2MN −Π2MN) (D.107)

Note that this is quite an interesting result by itself: It is often claimed that Forward-

Backward-Averaging does not alter the noise statistics which can be seen from the fact that

E{vec{N (fba)} ⋅ vec{N (fba)}H} = σ2
n ⋅ I2MN (which can also be verified at this point by sum-

ming (D.106) and (D.107)). While it is true that the (complex) entries of N (fba) are still

uncorrelated, the derivations of this section show that this is not true any more for the real

part and the imaginary part of the elements of N (fba). Note that the first terms in (D.106)
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and (D.107) are both equal to σ2
n/2 ⋅I2MN and hence similar to the corresponding result (D.72)

in the proof of Theorem 12.4.1 for R-D Standard ESPRIT. This explains that the resulting

MSE expression contains
σ2
n

2
⋅∥W (fba)T

mat ⋅ r(r)(fba)
k

∥2
2

as a first term, following the same arguments

as in the proof for Theorem 12.4.1. The remaining terms in (D.106) and (D.107) are given by

±σ2
n/2 ⋅Π2MN . Inserting these into (D.103) we obtain

Im{r(r)(fba)T
k

⋅W (fba)
mat } ⋅Π2MN ⋅ Im{W (fba)T

mat ⋅ r(r)(fba)
k

}
−Re{r(r)(fba)T

k
⋅W (fba)

mat } ⋅Π2MN ⋅Re{W (fba)T
mat ⋅ r(r)(fba)

k
}

= −Re{r(r)(fba)T
k

⋅W (fba)
mat ⋅Π2MN ⋅W (fba)T

mat ⋅ r(r)(fba)
k

} (D.108)

where we have used the fact that for arbitrary complex vectors z1 and z2 we have

Re{zT1 ⋅ z2} = Re{zT1 } ⋅Re{z2} − Im{zT1 } ⋅ Im{z2} . (D.109)

This completes the proof for the MSE expression for R-D Unitary ESPRIT given in equa-

tion (12.36). The proof for (12.37) for 2-D Unitary Tensor-ESPRIT proceeds in a completely

analogous fashion as we only replace W
(fba)
mat by W

(fba)
ten consistently.

D.15. Proof of Theorem 12.4.4

Without regularization, the cost function for 1-D Structured Least Squares can be expressed

as [Haa97b]

Ψ̂SLS = argmin
Ψ,∆U s

∥J1 ⋅ (Û s +∆U s) ⋅Ψ − J2 ⋅ (Û s +∆U s)∥2
F
. (D.110)

where we have used ∆U s only to avoid confusion with the ∆U s associated to the estimation

error in Û s. Note that the cost function is solved in an iterative manner starting with ∆U s =

0M×d and with Ψ =ΨLS, where ΨLS = (J1 ⋅ Û s)+ ⋅ (J2 ⋅ Û s) represents the LS solution to the

shift invariance equation. As we compute only a single iteration we find one update term for

Û s and one for ΨLS which we denote as ∆U s,SLS and ∆ΨSLS (i.e., ∆U s,SLS represents the

∆U s which minimizes the linearized version of (D.110)). In other words, the cost function

becomes

Ψ̂SLS = Ψ̂LS +∆ΨSLS where (D.111)

309



Appendix D. Proofs and derivations for Part III

∆ΨSLS = argmin
∆Ψ,∆U s

∥J1 ⋅ (Û s +∆U s) ⋅ (ΨLS +∆Ψ) − J2 ⋅ (Û s +∆U s)∥2
F

= argmin
∆Ψ,∆U s

∥J1 ⋅ Û s ⋅ΨLS − J2 ⋅ Û s + J1 ⋅∆U s ⋅ΨLS + J1 ⋅ Û s ⋅∆Ψ − J2 ⋅∆U s +O{∆2}∥2
F

= argmin
∆Ψ,∆U s

∥RLS + J1 ⋅∆U s ⋅ΨLS + J1 ⋅ Û s ⋅∆Ψ − J2 ⋅∆U s +O{∆2}∥2
F

(D.112)

where we have defined the matrix RLS = J1 ⋅Û s ⋅ΨLS−J2 ⋅Û s which contains the residual error

in the shift invariance equation after the LS fit. Since (D.112) is linearized by skipping the

quadratic terms in O{∆2}, it is easily solved by an LS fit. To express the result in closed-form

we vectorize (D.112) using the fact that ∥A∥F = ∥vec{A}∥2 and obtain

∆ψSLS = argmin
vec{∆Ψ},vec{∆U s}

∥rLS + (Ψ̂T

LS ⊗ J1) ⋅ vec{∆U s}
+ (Id ⊗ (J1 ⋅ Û s)) ⋅ vec{∆Ψ} − (Id ⊗ J2) ⋅ vec{∆U s} +O{∆2}∥2

2

⇒∆ψSLS = argmin
vec{∆Ψ},vec{∆U s}

XXXXXXXXXXXXrLS + F̂ SLS ⋅
⎡⎢⎢⎢⎢⎣
vec{∆Ψ}
vec{∆U s}

⎤⎥⎥⎥⎥⎦ +O{∆
2}XXXXXXXXXXXX

2

2

(D.113)

⇒ ⎡⎢⎢⎢⎢⎣
∆ψSLS

∆us,SLS

⎤⎥⎥⎥⎥⎦ = −F̂
+

SLS ⋅ rLS (D.114)

where we have introduced the vectorized quantities rLS = vec{RLS}, ∆ψSLS = vec{∆ΨSLS},
and ∆us,SLS = vec{∆U s,SLS}, respectively. We have also skipped the quadratic terms O{∆2}
in (D.113) for the solution in (D.114). Moreover, the matrix F̂ SLS becomes

F̂ SLS = [Id ⊗ (J1 ⋅ Û s) , (Ψ̂T

LS ⊗ J1) − (Id ⊗ J2)] ∈ C(M−1)d×(d2+M ⋅d) (D.115)

Therefore, our next goal is to find a first order expansion of ∆ψSLS in (D.114). This looks

difficult at first sight as it involves an expansion of a pseudo-inverse due to F̂ SLS. However, this

step simplifies significantly by realizing that F̂ SLS can be expressed as F̂ SLS = F SLS +∆F̂ SLS,

where

F SLS = [Id ⊗ (J1 ⋅U s) , (ΨT ⊗ J1) − (Id ⊗ J2)] ∈ C(M−1)d×(d2+M ⋅d) (D.116)

∆F SLS = [Id ⊗ (J1 ⋅∆U s) , (∆ΨT
LS ⊗ J1)]
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where Ψ̂LS = Ψ +∆ΨLS. Since F SLS is not random (i.e., only dependent on X0 but not on

N) and ∆ΨLS = 0d×d +O{∆} (cf. (D.65)), i.e., at least linear in the perturbation, we have

F̂
+

SLS = F
+

SLS +O{∆} . (D.117)

This relation only describes the zero-th term of the expansion of F̂
+

SLS. However, as we

see below, the linear term is not needed for a first order expansion of ∆ψSLS. Continuing

with (D.114), the second term of the right-hand side is given by rLS for which we can write

rLS = vec{J1 ⋅ Û s ⋅ Ψ̂LS − J2 ⋅ Û s}
= vec{J1 ⋅ (U s +∆U s) ⋅ (Ψ +∆ΨLS) − J2 ⋅ (U s +∆U s)}
= vec

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J1 ⋅U s ⋅Ψ − J2 ⋅U s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0(M−1)×d

+J1 ⋅∆U s ⋅Ψ + J1 ⋅U s ⋅∆ΨLS − J2 ⋅∆U s +O{∆2}
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= vec{J1 ⋅∆U s ⋅Ψ + J1 ⋅U s ⋅∆ΨLS − J2 ⋅∆U s +O{∆2}} (D.118)

Moreover, as shown in [LLV93] (cf. (D.65)), ∆ΨLS can be expressed in terms of ∆U s via

∆ΨLS = (J1 ⋅U s)+ ⋅ J2 ⋅∆U s − (J1 ⋅U s)+ ⋅ J1 ⋅∆U s ⋅Ψ +O{∆2} . (D.119)

Using this expansion in (D.118) we obtain

rLS = vec{J1 ⋅∆U s ⋅Ψ} + vec{J1 ⋅U s ⋅ (J1 ⋅U s)+ ⋅ J2 ⋅∆U s}
− vec{J1 ⋅U s ⋅ (J1 ⋅U s)+ ⋅ J1 ⋅∆U s ⋅Ψ} − vec{J2 ⋅∆U s} +O{∆2}
=WR,U ⋅ vec{∆U s} +O{∆2} where (D.120)

WR,U = (ΨT ⊗ J1) + Id ⊗ (J1 ⋅U s (J1 ⋅U s)+ ⋅ J2) −ΨT ⊗ (J1 ⋅U s (J1 ⋅U s)+ ⋅ J1) − (Id ⊗ J2).
Using (D.120) and (D.117) in (D.114) we find that

⎡⎢⎢⎢⎢⎣
∆ψSLS

∆us,SLS

⎤⎥⎥⎥⎥⎦ = −F̂
+

SLS ⋅ rLS = − (F +SLS +O{∆}) ⋅ (WR,U ⋅ vec{∆U s} +O{∆2})
= −F +SLS ⋅WR,U ⋅ vec{∆U s} +O{∆2} (D.121)

Note that from (D.116) it follows that F SLS has full row-rank and hence its pseudo-inverse can

be expressed as F +SLS = F
H
SLS ⋅ (F SLS ⋅FH

SLS)−1. This allows us to extract ∆ψSLS from (D.121)

since ∆us,SLS is not explicitly needed as long as only one SLS iteration is performed. We
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obtain

∆ψSLS = −(Id ⊗ (J1 ⋅U s)H) ⋅ (F SLS ⋅FH
SLS)−1 ⋅WR,U ⋅ vec{∆U s} +O{∆2} (D.122)

The final step in SLS-based ESPRIT is to replace the LS-based estimate Ψ̂LS by Ψ̂SLS =

Ψ̂LS+∆ΨSLS =Ψ+∆ΨLS+∆ΨSLS. Following the first-order expansion for Standard ESPRIT

from [LLV93] (cf. (D.67)) we obtain

∆µk = Im{pTk ⋅ (∆ΨLS +∆ΨSLS) ⋅ qk} /eµk +O{∆2}
= Im{pTk ⋅∆ΨLS ⋅ qk} /eµk + Im{(qTk ⊗ pTk ) ⋅∆ψSLS} /eµk +O{∆2} (D.123)

Since the first term is exactly the same as for LS-based 1-D Standard ESPRIT, we can use

the result from [LLV93]. Inserting the expansion for ∆ψSLS from (D.122) we obtain

∆µk = Im{pTk ⋅ (J1 ⋅U s)+ ⋅ ( J2

eµk
− J1) ⋅∆U s ⋅ qk} (D.124)

− Im{(qTk ⊗ pTk ⋅ (J1 ⋅U s)H) ⋅ (F SLS ⋅FH
SLS)−1 ⋅WR,U ⋅ vec{∆U s}} /eµk +O{∆2}

Finally, rearranging the first term as aT ⋅B ⋅ c = (cT ⊗ aT) ⋅ vec{B} we have

∆µk = Im{qTk ⊗ (pTk ⋅ (J1 ⋅U s)+ ⋅ ( J2

eµk
− J1)) ⋅ vec{∆U s}}

− Im{(qTk ⊗ pTk ⋅ (J1 ⋅U s)H
eµk

) ⋅ (F SLS ⋅FH
SLS)−1 ⋅WR,U ⋅ vec{∆U s}} +O{∆2}

= Im{rTk,SLS ⋅ vec{∆U s}} +O{∆2} , where

rTk,SLS = q
T
k ⊗ [pTk ⋅ (J1 ⋅U s)+ ⋅ ( J2

eµk
− J1)] − (qTk ⊗ [pTk ⋅ (J1 ⋅U s)H

eµk
]) ⋅ (F SLS ⋅FH

SLS)−1 ⋅WR,U,

(D.125)

which is the desired result (12.38). Equation (12.39) follows from (12.38) by inserting the first

order expansion for vec{∆U s} in terms of vec{N} as shown in Section D.12.

D.16. Proof of Theorem 12.4.5

This theorem consists of several parts which we address in separate subsections.
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D.16.1. MSE for Standard ESPRIT

We start by simplifying the MSE expression for 1-D Standard ESPRIT. In the case of a single

source we can write

X0 = a(µ) ⋅ sT, (D.126)

where a ∈ CM×1 is the array steering vector and s ∈ CN×1 contains the source symbols. Let

P̂T = ∥s∥22 /N be the empirical source power. Furthermore, since we assume a Uniform Linear

Array (ULA) of isotropic elements, a(µ) is given by a(µ) = [1, eµ, e2µ, . . . , e(M−1)µ]. Note

that ∥a(µ)∥22 =M . For notational convenience, we drop the explicit dependence of a on µ and

write just a(µ) = a in the sequel. The selection matrices J1 and J2 are then chosen as

J1 = [IM−1 0M−1×1] J2 = [0M−1×1 IM−1] (D.127)

for maximum overlap, i.e., M (sel)
=M −1. Since (D.126) is a rank-one matrix, we can directly

identify the subspaces with the array steering vector and the source symbol matrix, namely

U s = us =
a∥a∥2 ⋅ eϕ1 =

1√
M
⋅ a ⋅ eϕ1 (D.128)

V s = vs =
s∗∥s∥2 ⋅ e−ϕ1 =

1√
P̂T ⋅N ⋅ s

∗ ⋅ e−ϕ1 (D.129)

Σs = σs =

√
M ⋅N ⋅ P̂T. (D.130)

Here, the quantity eϕ1 stems from the fact that the SVD is only unique up to one arbitrary

phase term per column of U if the opposite phase term is included in the corresponding column

of V . For the MSE expression from Theorem 12.4.1 we also require the quantity Un ⋅ UH
n ,

which resembles a projection matrix on the noise subspace. However, since the signal subspace

is spanned by a we can write Un ⋅UH
n = IM − a⋅aH

∥a∥22 = IM − 1
M
⋅a ⋅aH. The MSE expression for

1-D Standard ESPRIT also include the eigenvectors of Ψ denoted by pk and qk. However, for

the special case discussed here, Ψ is scalar and given by Ψ = Φ = eµ. Consequently, we have

pk = qk = 1 for the eigenvectors1.

Combining these expressions and inserting into (12.24) we have E{(∆µ
(r)
k
)2} = σ2

n/2 ⋅
1We could account for the scaling ambiguity of the eigenvectors by setting pk = α and qk = α

−1 for some α ∈ C≠0.

However, this scalar is irrelevant as it cancels immediately in the expression (12.26) for r
(r)
k

.
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∥WT
mat ⋅ r∥22 = σ2

n/2 ⋅ ∥rT ⋅Wmat∥22 with

r
(r)
k
= r = [(J1

a√
M

eϕ1)+ (J2/e⋅µ − J1)]T (D.131)

Wmat =
⎛⎝ 1√

M ⋅N ⋅ P̂T

⋅ sH√
P̂T ⋅N ⋅ e

−ϕ1
⎞⎠⊗ (IM − 1

M
⋅ a ⋅ aH) (D.132)

Note that Wmat is the Kronecker product of a 1 ×N vector and an M ×M matrix. Hence,

rT ⋅Wmat can be written as

⎛⎝ 1√
M ⋅N ⋅ P̂T

⋅ sH√
P̂T ⋅N ⋅ e

−ϕ1
⎞⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s̃T

⊗ [(J1
a√
M

eϕ1)+ (J2/e⋅µ − J1) ⋅ (IM − 1

M
⋅ a ⋅ aH)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ãT

.

(D.133)

Therefore, the MSE can be expressed as E{(∆µ
(r)
k
)2} = σ2

n/2 ⋅ ∥s̃T ⊗ ãT∥22, which is equal to

E{(∆µ
(r)
k
)2} = σ2

n/2 ⋅ ∥s̃T∥22 ⋅ ∥ãT∥22 according to Property (3.16).

Since s̃T is a scaled version of sH and ∥sH∥2
2
= N ⋅ P̂T we find that the first term in the MSE

expression can conveniently be expressed as

∥s̃T∥2
2
=

1

M ⋅N ⋅ P̂T

⋅ P̂T ⋅N
P̂T ⋅N =

1

M ⋅N ⋅ P̂T

. (D.134)

Next, we proceed to simplify ãT further. Firstly, since only the norm of ãT matters, the

phase term eϕ1 can be canceled. We then expand the pseudo-inverse of J1 ⋅ a using the rule

x+ = xH/ ∥x∥22 which yields

ãT =
√
M
aHJH

1∥J1a∥22 (J2/e⋅µ − J1) ⋅ (IM − 1

M
⋅ a ⋅ aH)

=
√
M

aH

M − 1JH
1 ⋅ (J2/e⋅µ − J1) ⋅ (IM − 1

M
⋅ a ⋅ aH) , (D.135)

where ∥J1a∥22 =M − 1 follows from the fact that all elements of a contains only phase terms.

Combining the last two brackets we can rewrite this expression into

ãT =
√
M

aH

M − 1JH
1 ⋅ ((J2/e⋅µ − J1) − 1

M
⋅ (J2/e⋅µ − J1) ⋅ a ⋅ aH)
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=

√
M

M − 1aHJH
1 ⋅
⎛⎜⎜⎝(J2/e⋅µ − J1) − 1

M
⋅ (J2/e⋅µ ⋅ a − J1 ⋅ a)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

⋅aH
⎞⎟⎟⎠

=

√
M

M − 1aHJH
1 ⋅ (J2/e⋅µ − J1)

=

√
M

M − 1(aHJH
1 ⋅ J2/e⋅µ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ãT
1

−aHJH
1 ⋅ J1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ãT
2

) (D.136)

Note that in the second step we have used the fact that a satisfies the shift invariance equation,

i.e., J1 ⋅ a ⋅ eµ = J2 ⋅ a, which can be rewritten as J2 ⋅ a/eµ − J1 ⋅ a = 0. Since we have

aH = [1, e−µ, e−2µ, . . . , e−(M−1)µ] it is easy to see that

ãT1 = [0,1, e−µ, e−2µ, . . . , e−(M−3)µ, e−(M−2)µ]/eµ
= [0, e−µ, e−2µ, . . . , e−(M−2)µ, e−(M−1)µ]

ãT2 = [1, e−µ, e−2µ, . . . , e−(M−2)µ,0] and hence

ãT1 − ãT2 = [−1,0, . . . ,0, e−(M−1)µ] (D.137)

Consequently, we find ∥ãT∥2
2
=

M(M−1)2 ⋅ 2. Combining this result with (D.134) we finally have

E{(∆µ
(r)
k
)2} = σ2

n

2
⋅ ∥s̃T∥2

2
⋅ ∥ãT∥2

2
=
σ2
n

2
⋅ 1

M ⋅N ⋅ P̂T

⋅ 2 ⋅ M(M − 1)2 (D.138)

=
σ2
n

N ⋅ P̂T

⋅ 1(M − 1)2 (D.139)

which is the desired result.

D.16.2. MSE for Unitary ESPRIT

The second part of the theorem is to show that for a single source, the MSE for Unitary

ESPRIT is the same as the MSE for Standard ESPRIT. Firstly, we expand X
(fba)
0 and find

X
(fba)
0 = [a ⋅ sT ΠM ⋅ a∗ ⋅ sH ⋅ΠN] = a ⋅ [sT e−⋅µ⋅(M−1) ⋅ sH ⋅ΠN] = a ⋅ sT (D.140)

where we have used the fact that for a ULA we have ΠM ⋅ a∗ = a ⋅ e−⋅µ⋅mc , where mc depends

on the choice of the phase center. If it is chosen in the middle of the array we have mc = 0, if

it is chosen at the first element as in (9.19) we have mc =M − 1. The particular choice of the

phase center is irrelevant and it is not difficult to show that it also cancels in the subsequent
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derivation. However, since the derivation is significantly more complicated to present with

an arbitrary choice of the phase center we stick to (9.19) for simplicity, and hence we set

mc =M − 1. Moreover, we have defined s to be

s =

⎡⎢⎢⎢⎢⎣
s

e−⋅µ⋅(M−1) ⋅ΠN ⋅ s∗
⎤⎥⎥⎥⎥⎦ (D.141)

Note that sHs = sH ⋅s+sT ⋅ΠN ⋅ΠN ⋅s∗ = 2 ⋅sH ⋅s. As for Standard ESPRIT, we relate (D.140)

to its SVD and obtain

u(fba)s =
a√
M
= us ⋅ eϕ1 , v(fba)s =

s∗√
2 ⋅N ⋅ P̂T

⋅ e−ϕ1 , σ(fba)s =

√
2 ⋅M ⋅N ⋅ P̂T (D.142)

An important consequence we can draw from (D.142) is that the column space us remains

unaffected from the forward-backward-averaging. Therefore we also have U
(fba)
n = Un and

hence U
(fba)
n U

(fba)H
n = IM − a⋅aH

M
. Following the lines of the derivation for 1-D Standard

ESPRIT we can show that

r(fba)T ⋅W (fba)
mat = s̃

T ⊗ ãT, (D.143)

where s̃ is given by

s̃ =
1√

2 ⋅M ⋅N ⋅ P̂T

⋅ s∗√
2 ⋅N ⋅ P̂T

⋅ e−ϕ1 (D.144)

and ã is the same as in the derivation for 1-D Standard ESPRIT (cf. equation (D.133)).

According to Theorem 12.4.3, the MSE for Unitary ESPRIT can be computed as

σ2
n

2
⋅ (r(fba)T ⋅W (fba)

mat ⋅ [r(fba)T ⋅W (fba)
mat ]H −Re{r(fba)T ⋅W (fba)

mat ⋅Π2MN ⋅ [r(fba)T ⋅W (fba)
mat ]T}) .

Using (D.143) and the fact that Π2MN =Π2N ⊗ΠM , this expression can be written into

σ2
n

2
⋅ (s̃T ⋅ s̃∗ ⋅ ãT ⋅ ã∗ − s̃T ⋅Π2N ⋅ s̃ ⋅ ãT ⋅ΠM ⋅ ã)

=
σ2
n

2
⋅ (∥s̃∥2

2
∥ã∥22 − s̃T ⋅Π2N ⋅ s̃ ⋅ ãT ⋅ΠM ⋅ ã) (D.145)

Since ã is the same as in (D.136) we know that ∥ã∥22 = 2 ⋅ M(M−1)2 . Moreover, ∥s̃∥2
2
=

1

2⋅M ⋅N ⋅P̂T
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follows directly from (D.144). For the second term in (D.145) we have

s̃
T ⋅Π2N ⋅ s̃ = 1

2 ⋅M ⋅N ⋅ P̂T

⋅ 1

2 ⋅N ⋅ P̂T

⋅ sH ⋅Π2N ⋅ s∗ ⋅ e−2ϕ
=

1

2 ⋅M ⋅N ⋅ P̂T

⋅ 1

2 ⋅N ⋅ P̂T

⋅ (sH ⋅ s ⋅ eµ(M−1) + sT ⋅ΠN ⋅ΠN ⋅ s∗ ⋅ eµ(M−1)) ⋅ e−2ϕ
=

1

2 ⋅M ⋅N ⋅ P̂T

⋅ 1

2 ⋅N ⋅ P̂T

⋅ (N ⋅ P̂T +N ⋅ P̂T) ⋅ eµ(M−1) ⋅ e−2ϕ
=

1

2 ⋅M ⋅N ⋅ P̂T

⋅ eµ(M−1) ⋅ e−2ϕ (D.146)

Similarly we can simplify ãT ⋅ΠM ⋅ ã by using (D.136) and (D.137) into

ãT ⋅ΠM ⋅ ã = M(M − 1)2 ⋅ [−1,0, . . . ,0, e−(M−1)µ] ⋅ΠM ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0

⋮
0

e−(M−1)µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ e2ϕ

=
M(M − 1)2 ⋅ (−e−(M−1)µ − e−(M−1)µ) ⋅ e2ϕ

= −2 ⋅ M(M − 1)2 ⋅ e−(M−1)µ ⋅ e2ϕ. (D.147)

Combining the results from (D.146) and (D.147) into (D.145) we finally obtain for the MSE

σ2
n

2
⋅ ( 1

2 ⋅M ⋅N ⋅ P̂T

⋅ 2 ⋅ M(M − 1)2 + 1

2 ⋅M ⋅N ⋅ P̂T

⋅ eµ(M−1) ⋅ e−2ϕ ⋅ 2 ⋅ M(M − 1)2 ⋅ e−(M−1)µ ⋅ e2ϕ)
=
σ2
n

2
⋅ ( 1

N ⋅ P̂T

⋅ 1(M − 1)2 + 1

N ⋅ P̂T

⋅ 1(M − 1)2 ⋅)
=

σ2
n

N ⋅ P̂T

⋅ 1(M − 1)2 (D.148)

which is equal to the result for 1-D Standard ESPRIT from (D.139) and hence proves this part

of the theorem.

D.16.3. Cramér-Rao Bound

The third part of the theorem is to simplify the deterministic Cramér-Rao Bound (CRB) for

the special case of a single source. To this end, a closed-form expression for the deterministic
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CRB for this setting is given by [SN89]

C =
σ2
n

2 ⋅N ⋅Re{[DH ⋅ (IM −A ⋅ (AH ⋅A)−1 ⋅AH) ⋅D]⊙ R̂T

S }−1 (D.149)

where R̂S =
1
N
⋅S ⋅SH is the sample covariance matrix of the source symbols and D ∈ CM×d is

the matrix of partial derivatives of the array steering vectors with respect to the parameters

of interest. In the case d = 1, we have R̂S = ∥s∥22 /N = P̂T and the CRB expression simplifies

into

C =
σ2
n

2 ⋅N ⋅ P̂T

⋅Re{dH ⋅ (IM − a ⋅ aH
M
) ⋅ d}−1

=
1

2 ⋅ ρ̂ ⋅Re{dH ⋅ d − 1

M
⋅ dH ⋅ a ⋅ aH ⋅ d}−1

=
1

2 ⋅ ρ̂ ⋅ [dH ⋅ d − 1

M
⋅ ∣dH ⋅ a∣2]−1 (D.150)

Since for a ULA the array steering vector can be expressed as a = [1 eµ e2µ . . . e(M−1)µ]
we have

d =
∂a

∂µ
=  ⋅ [0 eµ 2 ⋅ e2µ . . . (M − 1) ⋅ e(M−1)µ] . (D.151)

Consequently the terms dH ⋅ d and dH ⋅ a become

dH ⋅ d = M−1

∑
m=0

m2
=
1

6
⋅ (M − 1) ⋅M ⋅ (2M − 1)

dH ⋅ a = −M−1∑
m=0

m = − ⋅ 1
2
⋅ (M − 1) ⋅M (D.152)

Using these expressions in (D.150), we obtain

C =
1

2 ⋅ ρ̂ ⋅ [16 ⋅ (M − 1) ⋅M ⋅ (2M − 1) − 1

M
⋅ ∣− ⋅ 1

2
⋅ (M − 1) ⋅M ∣2]−1

=
1

2 ⋅ ρ̂ ⋅ [16 ⋅ (M − 1) ⋅M ⋅ (2M − 1) − 1

4
⋅ (M − 1)2 ⋅M]−1

=
1

2 ⋅ ρ̂ ⋅ [ 112 ⋅ (M − 1) ⋅M ⋅ (2 ⋅ (2M − 1) − 3 ⋅ (M − 1))]
−1

=
1

2 ⋅ ρ̂ ⋅ [ 112 ⋅ (M − 1) ⋅M ⋅ (M + 1)]
−1
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=
1

ρ̂
⋅ 6(M − 1) ⋅M ⋅ (M + 1) (D.153)

which is the desired result.

D.17. Proof of Theorem 12.4.6

The first order expansion for the estimation error of the k-th spatial frequency provided

in (12.38) can be expressed as

∆µk,SLS = Im{(rk,LS −∆rk,SLS)T ⋅Wmat ⋅ vec{N}} +O {∆2} (D.154)

where ∆rTk,SLS is given by

∆rTk,SLS = (qTk ⊗ [pTk ⋅ (J1 ⋅U s)H
eµk

]) ⋅ (F SLS ⋅FH
SLS)−1 ⋅WR,U

WR,U = (ΨT ⊗ J1) + Id ⊗ (J1 ⋅U s (J1 ⋅U s)+ ⋅ J2) −ΨT ⊗ (J1 ⋅U s (J1 ⋅U s)+ ⋅ J1) − (Id ⊗ J2)
F SLS = [Id ⊗ (J1 ⋅U s) , (ΨT ⊗ J1) − (Id ⊗ J2)]

For a single source, we have pk = qk = 1, Ψ = Ψ = eµ, and U s = a/√M , and therefore

∆rTk,SLS =∆r
T
SLS simplifies to

∆rTSLS =
(J1 ⋅ a)H√
M ⋅ eµ ⋅ (F SLS ⋅FH

SLS)−1 ⋅WR,U (D.155)

WR,U = (eµ ⋅ J1) + (J1 ⋅ a (J1 ⋅ a)+ ⋅ J2) − eµ ⋅ (J1 ⋅ a (J1 ⋅ a)+ ⋅ J1) − J2

F SLS = [J1 ⋅ a√
M

, eµ ⋅ J1 − J2]
We can write WR,U as

WR,U = (J1 ⋅ a (J1 ⋅ a)+ − IM−1) ⋅ (J2 − eµ ⋅ J1) (D.156)

Moreover, we need to simplify the term (F SLS ⋅FH
SLS)−1. To this end, note that F SLS ⋅ FH

SLS

can be written into

F SLS ⋅FH
SLS =

1

M
⋅ J1 ⋅ a ⋅ aH ⋅ JH

1 + (eµ ⋅ J1 − J2) ⋅ (eµ ⋅ J1 − J2)H
=

1

M
⋅ J1 ⋅ a ⋅ aH ⋅ JH

1 + 2 ⋅ IM−1 − J1 ⋅ JH
2 ⋅ eµ − J2 ⋅ JH

1 ⋅ e−µ
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= diag {J1 ⋅ a} ⋅ ( 1

M
⋅ 1(M−1)×(M−1) + 2 ⋅ IM−1 − J1 ⋅ JH

2 − J2 ⋅ JH
1 ) ⋅ diag {J1 ⋅ a}H

(D.157)

In the last step we have applied the identity x = x⊙1N = diag {x} ⋅1N , ∀x ∈ CN×1 to simplify

the first term. For the second term we have used the fact that the vector a contains only

phase term so that ∣am∣2 = 1 ∀m = 1,2, . . . ,M , where am is the m-th element of the vector a.

Finally, the third and the fourth term follows because a satisfies the shift invariance equation

and therefore am = am−1 ⋅ eµ ∀m = 2,3, . . . ,M . Equation (D.157) shows that the inverse of

F SLS ⋅FH
SLS can be expressed as

(F SLS ⋅FH
SLS)−1 = diag {J1 ⋅ a} ⋅G−1 ⋅ diag {J1 ⋅ a}H , where (D.158)

G =
1

M
⋅ 1(M−1)×(M−1) + 2 ⋅ IM−1 − J1 ⋅ JH

2 − J2 ⋅ JH
1

since (diag {J1 ⋅ a})−1 = diag {J1 ⋅ a}H. To proceed further, we require the following lemma:

Lemma D.17.1. The inverse of the matrix G = 1
M
⋅1(M−1)×(M−1) +2 ⋅IM−1 −J1 ⋅JH

2 −J2 ⋅JH
1

is given by the following expression

[G−1](m1,m2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
M
⋅ ((M −m1) ⋅m2 − 3 ⋅ m1⋅(M−m1)⋅m2⋅(M−m2)

M2
+11

) m1 ≥m2

1
M
⋅ (m1 ⋅ (M −m2) − 3 ⋅ m1⋅(M−m1)⋅m2⋅(M−m2)

M2
+11

) m1 <m2

(D.159)

m1,m2 = 1,2, . . . ,M − 1
Proof. This lemma can be proved in different ways. One way is to multiply (D.159) with

G and show that the resulting matrix is equal to an identity matrix. A more constructive

proof is to find the inverse of G by computing the inverse of the tri-diagonal matrix G0 =

2 ⋅ IM−1 − J1 ⋅ JH
2 − J2 ⋅ JH

1 (which is equal to 2 on its main diagonal and -1 on its first upper

and its first lower off-diagonal, respectively) first. It is easy to show that the (m1,m2)-element

of G−10 is equal to 1
M
⋅ (M −m1) ⋅m2 for m1 ≥ m2 and 1

M
⋅m1 ⋅ (M −m2) for m1 < m2. Then,

we can compute the inverse of G by applying the matrix inversion lemma since G = G0 +
1
M
⋅ 1(M−1)×1 ⋅ 11×(M−1) and therefore G−1 = G−10 − G−10 ⋅1(M−1)×1⋅

1
M
⋅11×(M−1)⋅G

−1
0

1+ 1
M
⋅11×(M−1)⋅G

−1
0 ⋅1(M−1)×1

. This expression

involves the column sum of G−10 , i.e., the vector G−10 ⋅1(M−1)×1 which can be shown to be equal

to [1
2
⋅m ⋅ (M −m)]m=1,2,...,M . Here, the notation [ai]i=1,2,...,I refers to an I × 1 column vector

a with i-th element ai. The denominator of G−1 therefore becomes 1+ 1

M

M−1

∑
m=1

1

2
⋅m ⋅ (M −m)

which is equal to 1 + 1
2⋅M

1
6
(M − 1)M(M + 1) = 1

12
(12 +M2 − 1) = 1

12
(M2 + 11).
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Collecting our intermediate results from (D.155), (D.157), and (D.156) we have for ∆rTSLS

∆rTSLS =
(J1a)H√
M ⋅ eµ ⋅ diag {J1 ⋅ a} ⋅G−1 ⋅ diag {J1 ⋅ a}H ⋅ (J1 ⋅ a (J1 ⋅ a)+ − IM−1) ⋅ (J2 − eµ ⋅ J1)

=
11×(M−1)√

M
⋅G−1 ⋅ diag {J1 ⋅ a}H ⋅ (J1 ⋅ a (J1 ⋅ a)+ − IM−1) ⋅ (J2/eµ − J1)

=
11×(M−1)√

M
⋅G−1 ⋅ (diag {J1 ⋅ a}H ⋅ J1 ⋅ a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1(M−1)×1

⋅ (J1 ⋅ a)+ ⋅ (J2/eµ − J1)
− (diag {J1 ⋅ a}H ⋅ J2/eµ − diag {J1 ⋅ a}H ⋅ J1))
=
11×(M−1) ⋅G−1√

M
⋅ (1(M−1)×1 ⋅ (J1 ⋅ a)+ ⋅ (J2/eµ − J1) − (J2 ⋅ diag {a}H − J1 ⋅ diag {a}H))

=
1√
M

11×(M−1) ⋅G−1 ⋅ 1(M−1)×1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
γ(M)

⋅ (J1 ⋅ a)+ ⋅ (J2/eµ − J1)

− 11×(M−1) ⋅G−1√
M

⋅ (J2 − J1) ⋅ diag {a}H (D.160)

Consequently, the matrix G−1 enters this vector only via its row-sum gT = 11×(M−1) ⋅G−1.
Summing (D.159) over m1 we obtain

gT = 11×(M−1) ⋅G−1 = [1
2
⋅m ⋅ (M −m) − 3

M
⋅ 1
6
(M − 1)M(M + 1) ⋅ m ⋅ (M −m)

M2 + 11 ]T
m=1,2,...,M−1

= [m ⋅ (M −m)]Tm=1,2,...,M−1 ⋅ 12 ⋅ (1 − M2 − 1
M2 + 11)

= [m ⋅ (M −m)]Tm=1,2,...,M−1 ⋅ 12 ⋅ M
2 + 11 −M2 + 1
M2 + 11

= [m ⋅ (M −m)]Tm=1,2,...,M−1 ⋅ 6

M2 + 11 , (D.161)

We can find the scalar γ(M) in (D.160) by summing the elements of gT. We obtain

γ(M) = 6

M2 + 11
M−1

∑
m=1

m ⋅ (M −m) = 6

M2 + 11 ⋅
1

6
⋅ (M − 1)M(M + 1) = (M − 1)M(M + 1)

M2 + 11
For the second term in (D.160) we need to simplify gT ⋅(J2−J1). Note that the matrix J2−J1
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has the following form

J2 − J1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

⋮ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0 . . . 1 0

0 0 0 . . . −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(D.162)

Therefore, the multiplication with J2 − J1 leads to a differentiation, i.e.,

gT ⋅ (J2 − J1) = gTD = [−g1, g1 − g2, g2 − g3, . . . , gM−2 − gM−1, gM−1] (D.163)

where gm is the m-th element of gT. Using (D.161) we can compute the m-th element of the

vector gTD, which we denote as gD,m as

gD,m =
6

M2 + 11 ⋅
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−M + 1 m = 1

2m −M − 1 m = 2,3, . . . ,M − 1
M − 1 m =M

=
6

M2 + 11 ⋅ (2m −M − 1), m = 1,2, . . . ,M (D.164)

Collecting our intermediate results, we have shown that rTSLS can be written as

rTSLS = r
T
LS −∆rTSLS

= (J1 ⋅ a√
M
)+ ⋅ (J2/eµ − J1) − γ(M)√

M
⋅ (J1 ⋅ a)+ ⋅ (J2/eµ − J1) + 1√

M
⋅ gTD ⋅ diag {a}H

=
√
M ⋅ ((1 − γ(M)

M
) ⋅ (J1a)+ ⋅ (J2/eµ − J1) + 1

M
⋅ gTD ⋅ diag {a}H) (D.165)

where rLS has been taken from (D.131). The next step to computing the mean square error

is to calculate the vector WT
mat ⋅ rSLS. The first few steps in computing this product are very

similar to the LS case. Following (D.133) we find that in the SLS case, the resulting vector is

again equal to a Kronecker product of the same vector s̃T and a modified vector ãTSLS, i.e.,

rTSLS ⋅Wmat = s̃
T ⊗ ãTSLS, where (D.166)

ãTSLS =
√
M ⋅ ((1 − γ(M)

M
) ⋅ (J1a)+ ⋅ (J2/eµ − J1) + 1

M
⋅ gTD ⋅ diag {a}H) ⋅ (IM − a ⋅ aHM

)
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For the first term of ãTSLS we find by applying similar arguments as in (D.136)

√
M ⋅(1 − γ(M)

M
) ⋅ (J1a)+ ⋅ (J2/eµ − J1) ⋅ (IM − a ⋅ aH

M
)

=

√
M

M − 1 ⋅ (1 − (M − 1)M(M + 1)M(M2 + 11) ) ⋅ [−1,0, . . . ,0, e−(M−1)µ]
=12 ⋅

√
M(M − 1)(M2 + 11) ⋅ [−1,0, . . . ,0, e−(M−1)µ] (D.167)

For the second term we can write√
M

M
⋅ gTD ⋅ diag {a}H ⋅ (IM − a ⋅ aHM

) = √M
M
⋅ (gTD ⋅ diag {a}H − gTD ⋅ diag {a}H ⋅ a ⋅ aH/M)

=

√
M

M
⋅ gTD ⋅ diag {a}H (D.168)

where we have used the fact that diag {a}H ⋅ a = 1M×1 and gTD = g
T ⋅ (J2 − J1) so that

gTD ⋅diag {a}H ⋅a = gT ⋅ (J2 −J1) ⋅1M×1 = gT ⋅0(M−1)×1 since (J2 −J1) differentiates the vector

of ones. Combining (D.167) and (D.168) we find for ãTSLS

ãTSLS = 12 ⋅
√
M(M − 1)(M2 + 11) ⋅ [−1,0, . . . ,0, e−(M−1)µ] +

√
M

M
⋅ 6

M2 + 11 ⋅
[(−M + 1), (−M + 3)e−µ, (−M + 5)e−2µ, . . . , (M − 1) ⋅ e−(M−1)µ] (D.169)

We conclude that the two vectors ãTSLS consists of have the same phase in each element and

can hence be conveniently combined. When computing the squared norm of ãTSLS by summing

the squared magnitude of all elements the phase terms cancel which also confirms the intuition

the the result should be independent of the particular position µ. We obtain

∥ãTSLS∥22 = √M2 ⋅ ( −12(M − 1)(M2 + 11) + 6 ⋅ (−M + 1)
M(M2 + 11))

2

+M−1

∑
m=2

36

M(M2 + 11)2 ⋅ (−M + 2m − 1)2
+√M2 ⋅ ( 12(M − 1)(M2 + 11) + 6 ⋅ (M − 1)

M(M2 + 11))
2

=2 ⋅M ⋅ 62(M2 + 11)2 ⋅ (2M + (M − 1)
2

M(M − 1) )2 + 36

M(M2 + 11)2 ⋅
M−1

∑
m=2

(−M + 2m − 1)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1
3
(M−3)(M−2)(M−1)
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=2 ⋅ 36(M2 + 11)2 ⋅ (M
2 + 1)2

M(M − 1)2 + 12(M − 3)(M − 2)(M − 1)
M(M2 + 11)2

=
12

M(M2 + 11)2 (6(M
2 + 1)2(M − 1)2 + (M − 3)(M − 2)(M − 1))

=
12

M(M2 + 11)2(M − 1)2 ⋅ (6(M2 + 1)2 + (M − 3)(M − 2)(M − 1)3)
=

12

M(M2 + 11)2(M − 1)2 ⋅M ⋅ (M4 − 2M3 + 24M2 − 22M + 23)
=12 ⋅ M4 − 2M3 + 24M2 − 22M + 23(M2 + 11)2(M − 1)2 (D.170)

The mean square error is given by (cf. equation (D.138))

E{(∆µ)2} = σ2
n

2
⋅ ∥s̃T∥2

2
⋅ ∥ãTSLS∥22 (D.171)

Inserting (D.134) and (D.170) we have

E{(∆µ)2} = σ2
n

2
⋅ 1

M ⋅N ⋅ P̂T

⋅ 12 ⋅ M4 − 2M3 + 24M2 − 22M + 23(M2 + 11)2(M − 1)2
=

σ2
n

N ⋅ P̂T

⋅ 6 ⋅ M4 − 2M3 + 24M2 − 22M + 23
M(M2 + 11)2(M − 1)2 , (D.172)

which is the desired result.

D.18. Proof of Theorem 12.4.7

D.18.1. R-D Standard ESPRIT

The proof for the R-D extension is in fact quite similar to the proof for the 1-D case provided

in Section D.16. In fact, (D.126) is still valid, the only difference being that a(µ) becomes

a(µ(1))⊗ . . .⊗a(µ(R)) = a(µ). However, the first steps of the derivation can still be performed

in the very same way. We obtain the MSE for R-D Standard ESPRIT as

E{(∆µ(r))2} = σ2
n

2
⋅ ∥r(r)T ⋅Wmat∥2

2
=
σ2
n

2
⋅ ∥s̃∥22 ⋅ ∥ã(r)∥22 , (D.173)
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where s̃ is the same as in the 1-D case (cf. equation (D.133)) and ã(r) is given by

ã(r)T =√M aHJ̃
(r)H
1

∥J̃(r)1 a∥2
2

(J̃(r)2 /e⋅µ(r) − J̃(r)1 ) ⋅ (IM − 1

M
⋅ a ⋅ aH) . (D.174)

Since J̃
(r)
1 selects the Mr − 1 out of Mr elements in the r-th mode, we have ∥J̃(r)1 a∥2

2

=

M
Mr
⋅(Mr −1). Moreover, two of the four terms in (D.174) cancel since the array steering vector

satisfies the shift invariance equation in the r-th mode, i.e., J̃
(r)
1 ⋅a ⋅e⋅µ(r) = J̃(r)2 ⋅a. We obtain

ã(r)T =√M aHJ̃
(r)H
1

M
Mr
⋅ (Mr − 1) ((J̃

(r)
2 /e⋅µ(r) − J̃(r)1 ) − 1

M
⋅ (J̃(r)2 /e⋅µ(r) − J̃(r)1 ) ⋅ a ⋅ aH)

=
√
M

aHJ̃
(r)H
1

M
Mr
⋅ (Mr − 1)

⎛⎜⎜⎜⎜⎝
(J̃(r)2 /e⋅µ(r) − J̃(r)1 ) − 1

M
⋅ (J̃(r)2 ⋅ a/e⋅µ(r) − J̃(r)1 ⋅ a)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

⋅aH
⎞⎟⎟⎟⎟⎠

=

√
M ⋅Mr

M ⋅ (Mr − 1) ⋅ (aH ⋅ J̃(r)
H

1 ⋅ J̃(r)2 /e⋅µ(r) − aH ⋅ J̃(r)H1 ⋅ J̃(r)1 ) (D.175)

Since the the array steering vector a and the selection matrices J̃
(r)
ℓ can be factored into

Kronecker products according to a = a(1) ⊗ . . .a(R) and J̃(r)ℓ = I∏r−1
n=1 Mn

⊗ J(r)
ℓ
⊗ I∏R

n=r+1 Mn
,

for ℓ = 1,2 and r = 1,2, . . . ,R, all “unaffected” modes can be factored out of (D.175) and we

have

ã(r)T =
√
M ⋅Mr

M ⋅ (Mr − 1) ⋅ (a(1) ⊗ . . .⊗ a(r−1))H ⊗ (ã(r)1 − ã(r)2 )T ⊗ (a(r+1) ⊗ . . .⊗ a(R))H (D.176)

where ã
(r)
1 and ã

(r)
2 are given by

ã
(r)T
1 = a(r)H ⋅ J(r)H1 ⋅ J(r)2 /e⋅µ(r) and ã

(r)T
2 = a(r)H ⋅ J(r)H1 ⋅ J(r)1 . (D.177)

Following the same reasoning as for (D.137) we find

ã
(r)T
1 − ã(r)T2 = [−1,0, . . . ,0, e−(Mr−1)µ(r)] (D.178)
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Consequently, the desired norm ∥ã(r)∥2
2
is directly found to be

∥ã(r)∥2
2
=

M ⋅M2
r

M2 ⋅ (Mr − 1)2 ⋅ (
r−1

∏
n=1

∥a(n)∥2
2
) ⋅ 2 ⋅ ( R

∏
n=r+1

∥a(n)∥2
2
) = 2 ⋅ M2

r

M ⋅ (Mr − 1)2 ⋅
M

Mr

=2 ⋅ Mr(Mr − 1)2 . (D.179)

Therefore, the MSE expression for R-D Standard ESPRIT is given by

E{(∆µ(r))2} = σ2
n

2
⋅ 1

M ⋅N ⋅ P̂T

⋅ 2 ⋅ Mr(Mr − 1)2 =
σ2
n

N ⋅ P̂T

⋅ Mr

M ⋅ (Mr − 1)2 (D.180)

which proofs the first part of the theorem.

D.18.2. R-D Unitary ESPRIT

The second part of the theorem is to prove that in the R-D case the performance of R-

D Unitary ESPRIT and R-D Standard ESPRIT are the same as long as a single source is

present. However, for this part, no changes have to be made compared to Section D.16.2: As

it was shown there, Forward-Backward-Averaging only affects vs and has no effect on us or

Un. Applying the same steps here immediately proves this part of the theorem.

D.18.3. Cramér-Rao Bound

The third part is the simplification of the Cramér-Rao Bound. In the R-D case, the CRB is

given by

C =
σ2
n

2 ⋅N ⋅Re{[D(R)H ⋅ (IM −A ⋅ (AH ⋅A)−1 ⋅AH) ⋅D(R)]⊙ (1R×R ⊗ R̂T

S )}−1 (D.181)

where D(R) ∈ CM×(d⋅R) contains the partial derivatives of the array steering vectors an with

respect to µ
(r)
n for n = 1,2, . . . , d and r = 1,2, . . . ,R. For the special case of a single source, the

CRB simplifies into

C =
σ2
n

2 ⋅N ⋅Re{[D(R)H ⋅ (IM − 1

M
⋅ a ⋅ aH) ⋅D(R)]⊙ (1R×R ⊗ P̂T)}−1

=
σ2
n

2 ⋅N ⋅ P̂T

⋅Re
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
D(R)H ⋅ (IM − 1

M
⋅ a ⋅ aH) ⋅D(R)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

−1

(D.182)
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The columns of D(R) ∈ CM×R are given by d̃
(r)
=

∂a
∂µ(r)

∈ C
M×1. Using the fact that a =

a(1) ⊗ . . .⊗ a(R) we obtain

d̃
(r)
= a(1) ⊗ . . .⊗ a(r−1) ⊗ d(r) ⊗ a(r+1) ⊗ . . .⊗ a(R) (D.183)

where d(r) = ∂a(r)

∂µ(r)
∈ C

Mr×1 =  ⋅ [0, eµ(r) ,2 ⋅ e2µ(r) , . . . , (M − 1)e(M−1)µ(r)]. Therefore, the

elements of the matrix J are given by

[J](r1,r2) = d̃(r1)H ⋅ d̃(r2) − 1

M
⋅ d̃(r1)H ⋅ a ⋅ aH ⋅ d̃(r2) (D.184)

With the help of (D.183) we find for the diagonal elements (r1 = r2 = r)

d̃
(r)H ⋅ d̃(r) = a(1)H ⋅ a(1) ⋅ . . . ⋅ a(r−1)H ⋅ a(r−1) ⋅ d(r)H ⋅ d(r) ⋅ a(r+1)H ⋅ a(r+1) ⋅ . . . ⋅ a(R)H ⋅ a(R)

= (M1 ⋅ . . . ⋅Mr−1) ⋅ (Mr−1

∑
m=0

m2) ⋅ (Mr+1 ⋅ . . . ⋅MR)
=
1

6
⋅M ⋅ (Mr − 1) ⋅ (2Mr − 1) (D.185)

and similarly

d̃
(r)H ⋅ a = a(1)H ⋅ a(1) ⋅ . . . ⋅ a(r−1)H ⋅ a(r−1) ⋅ d(r)H ⋅ a(r) ⋅ a(r+1)H ⋅ a(r+1) ⋅ . . . ⋅ a(R)H ⋅ a(R)

= (M1 ⋅ . . . ⋅Mr−1) ⋅ (−Mr−1

∑
m=0

m) ⋅ (Mr+1 ⋅ . . . ⋅MR)
= − ⋅M ⋅ 1

2
⋅ (Mr − 1) (D.186)

Combining these two results we have for [J](r,r)
[J](r,r) = 1

6
⋅M ⋅ (Mr − 1) ⋅ (2Mr − 1) − 1

M
(−) ⋅M ⋅ 1

2
⋅ (Mr − 1) ⋅  ⋅M ⋅ 1

2
⋅ (Mr − 1)

=
1

6
⋅M ⋅ (Mr − 1) ⋅ (2Mr − 1) − 1

4
⋅ (Mr − 1)M ⋅ (Mr − 1)

=
1

12
⋅M ⋅ (Mr − 1)(2(2Mr − 1) − 3(Mr − 1))

=
1

12
⋅M ⋅ (Mr − 1)(Mr + 1) (D.187)
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On the other hand, for the off-diagonal elements we obtain

d̃
(r1)H ⋅ d̃(r2) = M

Mr1 ⋅Mr2

⋅ (−1
2
⋅ (Mr1 − 1) ⋅Mr1) ⋅ (12 ⋅ (Mr2 − 1) ⋅Mr2)

=
1

4
M ⋅ (Mr1 − 1) ⋅Mr1 ⋅ (Mr2 − 1) ⋅Mr2 (D.188)

and therefore for [J](r1,r2), r1 ≠ r2
[J](r1,r2) =14M ⋅ (Mr1 − 1) ⋅Mr1 ⋅ (Mr2 − 1) ⋅Mr2

− 1

M
(−) ⋅M ⋅ 1

2
⋅ (Mr1 − 1) ⋅ () ⋅M ⋅ 12 ⋅ (Mr2 − 1)

=
1

4
M ⋅ (Mr1 − 1) ⋅Mr1 ⋅ (Mr2 − 1) ⋅Mr2 − 1

4
M ⋅ (Mr1 − 1) ⋅Mr1 ⋅ (Mr2 − 1) ⋅Mr2

=0 (D.189)

This shows that J is diagonal and real-valued. Consequently, the CRB becomes

C =
σ2
n

2 ⋅N ⋅ P̂T

⋅Re{J}−1 = diag {[C(1), . . . , C(R)]} where (D.190)

C(r) = σ2
n

2 ⋅N ⋅ P̂T

12

M ⋅ (Mr − 1) ⋅ (Mr + 1) =
1

ρ̂
⋅ 6

M ⋅ (Mr − 1) ⋅ (Mr + 1) ,
which is the desired result.

D.18.4. R-D Standard Tensor-ESPRIT

The fourth part of the theorem is to show that the MSE of R-D Standard Tensor-ESPRIT

is the same as the MSE for R-D Standard ESPRIT for d = 1. Since we have only shown the

expressions for R-D Standard Tensor-ESPRIT in the special case R = 2, we will also assume

this case here.

Note that the MSE expression for Tensor-ESPRIT is in fact quite similar to the one for

matrix-based ESPRIT with the only difference being that the matrixWmat is replaced by the

matrix W ten which we restate here for convenience

W ten = (Σ[s]−13 U
[s]H
3 )⊗ ([T 1 ⊗ T 2]V [n]∗3 V

[n]T
3 )

+ (UT
s ⊗ IM) T̄ 2 (U [s]∗1 Σ

[s]−1
1 V

[s]T
1 ⊗U [n]1 U

[n]H
1 ) ⋅KM2×(M1⋅N)

+ (UT
s ⊗ IM) T̄ 1 (U [s]∗2 Σ

[s]−1
2 V

[s]T
2 ⊗U [n]2 U

[n]H
2 ) where (D.191)
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T̄ 1 =

⎡⎢⎢⎢⎢⎢⎢⎣
IM2
⊗ t1,1
⋮

IM2
⊗ t1,M1

⎤⎥⎥⎥⎥⎥⎥⎦
⊗ IM2

, T̄ 2 = IM1
⊗
⎡⎢⎢⎢⎢⎢⎢⎣
IM1
⊗ t2,1
⋮

IM1
⊗ t2,M2

⎤⎥⎥⎥⎥⎥⎥⎦
,

and tr,m is the m-th column of T r.

To simplify this expression for the special case d = 1, we express X 0 and its unfoldings as

X 0 = a
(1) ○ a(2) ○ s ∈ CM1×M2×N (D.192)

[X 0](1) = a(1) ⋅ (a(2) ⊗ s)T , [X 0](2) = a(2) ⋅ (s⊗ a(1))T , [X 0](3) = s ⋅ (a(1) ⊗ a(2))T
Consequently, we can relate the necessary subspaces of the unfoldings of X 0 to s and a(r) via

u
[s]
1 =

a(1)√
M1

, u
[s]
2 =

a(2)√
M2

, u
[s]
3 =

s√
N ⋅ P̂T

(D.193)

U
[n]
1 = IM1

− a(1) ⋅ a(1)
H

M1

, U
[n]
2 = IM2

− a(2) ⋅ a(2)
H

M2

Σ
[s]
1 =Σ

[s]
2 =Σ

[s]
3 =

√
M ⋅N ⋅ P̂T

v
[s]
1 =

(a(2) ⊗ s)∗√
M2 ⋅N ⋅ P̂T

, v
[s]
2 =

(s⊗ a(1))∗√
M1 ⋅N ⋅ P̂T

, v
[s]
3 = us =

a√
M

V
[n]∗
3 ⋅V [n]T3 = Un ⋅UH

n = I − a ⋅ a
H

M
(D.194)

Moreover, we have for T r

T r = u
[s]
r ⋅u[s]Hr =

a(r) ⋅ a(r)H
Mr

, for r = 1,2 and thus

T 1 ⊗ T 2 =
a(1) ⋅ a(1)H

M1

⊗ a(2) ⋅ a(2)
H

M2

=
(a(1) ⊗ a(2)) ⋅ (a(1) ⊗ a(2))H

M
=
a ⋅ aH
M

(D.195)

From (D.194) and (D.195) it immediately follows that the first term in W ten cancels as it

contains [T 1 ⊗ T 2] ⋅ V [n]∗3 ⋅ V [n]T3 . We also find tr,m = a
(r) ⋅ e−µ(r)(m−1)/Mr for r = 1,2 and

m = 1,2, . . . ,Mr. To simplify the remaining two terms in W ten we first look at some of their

components. We start by (uT
s ⊗ IM) ⋅ T̄ 1. Using the identity us = a/√M and the explicit

expression for tr,m we may write

(uT
s ⊗ IM) ⋅ T̄ 1 =

1√
M
(aT ⊗ IM) ⋅ T̄ 1 =

1√
M
(a(1)T ⊗ a(2)T ⊗ IM1

⊗ IM2
) ⋅ T̄ 1
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=
1√
M
([1, eµ(1) , . . . , eµ(1)(M1−1)]⊗ a(2)T ⊗ IM1

⊗ IM2
) ⋅ T̄ 1

=
1√
M
([1, eµ(1) , . . . , eµ(1)(M1−1)]⊗ a(2)T ⊗ IM1

⊗ IM2
)

⋅ 1

Mr

⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IM2
⊗ a(1) ⊗ IM2

IM2
⊗ a(1) ⋅ e−µ(1) ⊗ IM2⋮

IM2
⊗ a(1) ⋅ e−µ(1)(M1−1) ⊗ IM2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

Mr

√
M

Mr

∑
m=1

eµ
(1)(m−1) ⋅ (a(2)T ⊗ IM1

⊗ IM2
) ⋅ (IM2

⊗ a(1) ⊗ IM2
) ⋅ e−µ(1)(m−1)

=
1

Mr

√
M
(a(2)T ⊗ a(1) ⊗ IM2

) ⋅ Mr

∑
m=1

1

²
Mr

=
1√
M
(a(2)T ⊗ a(1) ⊗ IM2

) , (D.196)

where we have used the fact that xT ⊗Y = [x1 ⋅Y , . . . , xN ⋅Y ], where xn is the n-th element

of x ∈ C
N×1, and and Y is a matrix of arbitrary size. By applying similar reasoning to(uT

s ⊗ IM) ⋅ T̄ 2 we can show

(uT
s ⊗ IM) ⋅ T̄ 2 =

1√
M
(a(1)T ⊗ IM1

⊗ a(2)) (D.197)

The remaining terms inW ten we have not yet associated with s and a(r) yet areU [s]∗r Σ
[s]−1
r V

[s]T
r ⊗

U
[n]
r U

[n]H
r . Using the relations (D.193)-(D.194) we can write

(U [s]∗1 Σ
[s]−1
1 V

[s]T
1 )⊗ (U [n]1 U

[n]H
1 ) = 1

MNP̂T

⋅ (a(1)∗ ⋅ (a(2) ⊗ s)H)⊗Π⊥
a(1)

(U [s]∗2 Σ
[s]−1
2 V

[s]T
2 )⊗ (U [n]2 U

[n]H
2 ) = 1

MNP̂T

⋅ (a(2)∗ ⋅ (s⊗ a(1))H)⊗Π⊥
a(2)

where we have used the short-hand notation Π⊥x = IN − xxH

xHx
for the projection matrix onto

the orthogonal complement of the vector x ∈ CN×1. Combining these intermediate result, the

last term in W ten can be expressed as

(uT
s ⊗ IM) ⋅ T̄ 1 ⋅ (U [s]∗2 Σ

[s]−1
2 V

[s]T
2 )⊗ (U [n]2 U

[n]H
2 )

=
1

MNP̂T

√
M
(a(2)T ⊗ a(1) ⊗ IM2

) ⋅ [(a(2)∗ ⋅ (s⊗ a(1))H)⊗Π⊥
a(2)
]

=
1

MNP̂T

√
M
∥a(2)∥2

2
⋅ (s⊗ a(1))H ⊗ [(a(1) ⊗ IM2

) ⋅Π⊥
a(2)
]
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=
1

MNP̂T

√
M
(M2 ⋅ sH ⊗ a(1)H ⊗ a(1) ⊗Π⊥

a(2)
) (D.198)

With similar arguments, the second term in W ten can be simplified into

(uT
s ⊗ IM) ⋅ T̄ 2 ⋅ (U [s]∗1 Σ

[s]−1
1 V

[s]T
1 )⊗ (U [n]1 U

[n]H
1 ) ⋅KM2×(M1⋅N)

=
1

MNP̂T

√
M
(M1 ⋅ a(2)H ⊗ sH ⊗Π⊥

a(1)
⊗ a(2)) ⋅KM2×(M1⋅N)

=
1

MNP̂T

√
M
(M1 ⋅ sH ⊗Π⊥

a(1)
⊗ a(2) ⊗ a(2)H) (D.199)

where the last step is a special case of Property (3.35) for commutation matrices.

Using (D.198) and (D.199) in (D.191), we obtain

W ten =
1

MNP̂T

√
M
(M1 ⋅ sH ⊗Π⊥

a(1)
⊗ a(2) ⊗ a(2)H +M2 ⋅ sH ⊗ a(1)H ⊗ a(1) ⊗Π⊥

a(2)
)

=
1

MNP̂T

√
M
⋅ sH ⊗ (M1 ⋅Π⊥a(1) ⊗ (a(2) ⋅ a(2)H) +M2 ⋅ (a(1) ⋅ a(1)H)⊗Π⊥

a(2)
)

=
1

NP̂T

√
M
⋅ sH ⊗ ⎛⎝Π⊥a(1) ⊗ a

(2) ⋅ a(2)H
M2

+ a(1) ⋅ a(1)
H

M1

⊗Π⊥
a(2)

⎞⎠
=

1

NP̂T

√
M
⋅ sH ⊗ (Π⊥

a(1)
⊗Πa(2) +Πa(1) ⊗Π⊥

a(2)
) (D.200)

where we applied the rule x⊗ yT = x ⋅ yT and used the short-hand notation Πx =
xxH

xHx
for the

projection matrix onto the vector x ∈ CN×1. Comparing (D.200) with (D.132) and its R-D

extension in (D.174) we find that for a single source,Wmat andW ten are in fact quite similar,

the only difference being that Π⊥a is replaced by Π⊥
a(1)
⊗Πa(2) +Πa(1) ⊗Π⊥

a(2)
. Therefore, to

show the R-D Standard ESPRIT and R-D Standard Tensor-ESPRIT have the same MSE for

d = 1, it is sufficient to show that the corresponding terms ã(r) are the same, i.e., that

aHJ̃
(r)H
1 (J̃(r)2 /e⋅µ(r) − J̃(r)1 ) ⋅Π⊥a = aHJ̃(r)H1 (J̃(r)2 /e⋅µ(r) − J̃(r)1 ) ⋅ (Π⊥a(1) ⊗Πa(2) +Πa(1) ⊗Π⊥

a(2)
)

(D.201)

for r = 1,2. Note that the left-hand side of (D.201) was shown to be equal to (cf. equa-

tion (D.176))

(ã(1)1 − ã(1)2 )T ⊗ a(2)T , for r = 1 and a(1)T ⊗ (ã(2)1 − ã(2)2 )T for r = 2 where (D.202)

ã
(r)T
1 = a(r)H ⋅ J(r)H1 ⋅ J(r)2 /e⋅µ(r) and ã

(r)T
2 = a(r)H ⋅ J(r)H1 ⋅ J(r)1 .
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Expanding the corresponding right-hand side of (D.201) we have for r = 1

aHJ̃
(1)H
1 (J̃(1)2 /e⋅µ(1) − J̃(1)1 ) ⋅ (Π⊥a(1) ⊗Πa(2) +Πa(1) ⊗Π⊥

a(2)
)

= [(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1) − J(1)1 ))⊗ a(2)H] ⋅ (Π⊥a(1) ⊗Πa(2) +Πa(1) ⊗Π⊥
a(2)
)

=(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1) − J(1)1 ) ⋅Π⊥a(1))⊗ (a(2)H ⋅Πa(2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a(2)

H

)
+(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1) − J(1)1 ) ⋅Πa(1))⊗ (a(2)H ⋅Π⊥a(2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

01×M2

) (D.203)

where we have used the fact that a = a(1) ⊗ a(2) and J̃(1)ℓ = J
(1)
ℓ
⊗ IM2

for ℓ = 1,2. Moreover,

a(2)H ⋅Πa(2) = a
(2)H and a(2)H ⋅Π⊥

a(2)
= 01×M2

follow from the fact thatΠa(2) andΠ⊥
a(2)

represent

projection matrices onto the vector a(2) and its orthogonal complement space, respectively.

Therefore, the right-hand side of (D.201) can be written as

(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1) − J(1)1 ) ⋅ (IM1
− 1

M1

a(1) ⋅ a(1)H))⊗ a(2)H
=(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1) − J(1)1 ))⊗ a(2)H
− 1

M1

(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1) − J(1)1 ) ⋅ a(1) ⋅ a(1)H)⊗ a(2)H
=(ã(1)T − ã(2)T)⊗ a(2)H − 1

M1

(a(1)HJ(1)H1 (J(1)2 /e⋅µ(1)a(1) − J(1)1 a(1))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0(M2−1)×1

⋅a(1)H)⊗ a(2)H

=(ã(1)T − ã(2)T)⊗ a(2)H (D.204)

where J
(1)
2 /e⋅µ(1)a(1) − J(1)1 a(1) = 0(M2−1)×1 follows from the fact that a(1) satisfies the shift

invariance equation for r = 1. This shows that the left-hand side and the right-hand side

of (D.201) are equal for r = 1. The proof for r = 2 proceeds in an analogous fashion. Conse-

quently, we have shown that for d = 1

r(r)T ⋅Wmat = r
(r)T ⋅W ten, for r = 1,2 (D.205)

and hence the MSE for 2-D Standard ESPRIT and 2-D Standard Tensor-ESPRIT are in fact

equal.

Note that even though many terms have canceled in this proof, e.g., the first term of W ten

has canceled completely, the second term has canceled for r = 2, and the third term for r = 1,
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this is specific to the special case d = 1 we considered here. Therefore, albeit the proof may

suggest that the MSE for 2-D Tensor-ESPRIT can be simplified in more general settings, this

is unfortunately not the case.

D.18.5. R-D Unitary Tensor-ESPRIT

The fifth and final part of the theorem is to show that the MSE for R-D Unitary ESPRIT is

again equal to the MSE for R-D Standard ESPRIT in case of a single source. Again, there is

no need to derive this in full detail. As it was shown in Section D.16.2, Forward-Backward-

Averaging has no effect on us or Un but only affects vs and V n. This carries over to the tensor

case where only the quantities involving the symbols are affected. However, since the “symbol

part” and the “array part” can always be factorized (cf. equation (D.200)), the arguments

from Section D.16.2 can still be applied to prove this part of the theorem.
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Appendix E.

Proofs and derivations for Part IV

E.1. Derivation of the iterative refinement update rule for TENCE

In order to derive the SLS-based update rule for the iterative refinement algorithm for TENCE

we first need the following lemma:

Lemma E.1.1. For a tensor S ∈ CN1×N2×N3 and matrices A ∈ CN1×M1 and B ∈ CN2×M2 the

following identities hold:

vec{S ×1AT ×2BT} =P (3)M1,M2,N3
⋅ (IM1

⊗ [S ×2BT]T(1)) ⋅ vec{A}
=P
(1)
M1,M2,N3

⋅ (IM2
⊗ [S ×1AT]T(2)) ⋅ vec{B} , (E.1)

where P
(n)
I,J,K are the permutation matrices defined in (4.11).

Proof. From the definition of the permutation matrices we know that

vec{S ×1AT ×2BT} = P (3)M1,M2,N3
⋅ vec{[S ×1AT ×2BT](3)} . (E.2)

Applying Theorem 4.1.1, this can be reformulated into

vec{S ×1AT ×2BT} = P (3)M1,M2,N3
⋅ vec{[S ×1AT ×2BT]T(1)} . (E.3)

Expanding the 1-mode product with the help of (4.5), we obtain

vec{S ×1AT ×2BT} = P (3)M1,M2,N3
⋅ vec{(AT ⋅ [S ×2BT](1))T}

= P
(3)
M1,M2,N3

⋅ vec{[S ×2BT]T(1) ⋅A} . (E.4)

We can now use property (3.7) to isolate A. We get

vec{S ×1AT ×2BT} = P (3)M1,M2,N3
⋅ (IM1

⊗ [S ×2BT]T(1)) ⋅ vec{A} , (E.5)
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which is the first line of the lemma. The proof of the second line is accomplished in a similar

fashion.

We start by expressing the cost function (15.29) in a more compact form by applying iden-

tity (4.1) for the higher-order norm of tensors. Then, we obtain the following alternative

representation of (15.29)

J(∆Hk) = ∥[ vec{Rk}T , κ1 ⋅ vec{∆H1,k}T , κ2 ⋅ vec{∆H2,k}T , ]T ∥2
2

. (E.6)

Next, we expand the residual tensor Rk+1 in terms of the updates for the channel matrices.

Using the update rules (15.31) and (15.32) in (15.30) for Rk+1 we obtain

Rk+1 =Ỹ1 −G ×1 (Ĥ1 +∆H1,k+1)T ×2 (Ĥ +∆Hk+1)T
=Ỹ1 −G ×1 (Ĥ1 +∆H1,k +∆∆H1,k)T ×2 (Ĥ +∆Hk +∆∆Hk)T
=Ỹ1 −G ×1 (Ĥ1 +∆H1,k)T ×2 (Ĥ +∆Hk)T −G ×1 ∆∆HT

1,k ×2 (Ĥ +∆Hk)T
−G ×1 (Ĥ1 +∆H1,k)T ×2 ∆∆HT

k −G ×1 ∆∆HT
1,k ×2 ∆∆HT

k

≈Rk −G ×1 ∆∆HT
1,k ×2 (Ĥ +∆Hk)T −G ×1 (Ĥ1 +∆H1,k)T ×2 ∆∆HT

k , (E.7)

where in the last step we have neglected the higher-order terms in ∆∆H1,k and ∆∆H2,k.

Therefore (E.7) is a linear function in these terms. In order to use this linear function in (E.6),

we apply the vec-operator and use Lemma E.1.1 to reorder the terms. Then,

vec{Rk+1} ≈vec{Rk} −P (3)M1,M1+M2,NR
⋅ (IM1

⊗ [G ×2 (Ĥ +∆Hk)T]T(1)) ⋅ vec{∆∆H1,k}
−P (1)M1,M1+M2,NR

⋅ (IM1+M2
⊗ [G ×1 (Ĥ1 +∆H1,k)T]T(2)) ⋅ vec{∆∆Hk} .

In order to separate the update terms ∆∆H1,k and ∆∆H2,k we apply the following identity

vec{∆∆Hk} =vec{[∆∆H1,k, ∆∆H2,k]} = ⎡⎢⎢⎢⎢⎣
vec{∆∆H1,k}
vec{∆∆H2,k}

⎤⎥⎥⎥⎥⎦ , (E.8)

which follows from the definition of the vec-operator. Equation (E.8) allows to express the

update equation for the residual tensor Rk in the following convenient fashion

vec{Rk+1} = vec{Rk} −F (1)k
⋅ vec{∆∆H1,k} −F (2)k

⋅ vec{∆∆H2,k} , (E.9)

335



Appendix E. Proofs and derivations for Part IV

where the matrices F
(1)
k

and F
(2)
k

are given by

F
(1)
k
=P
(3)
M1,M1+M2,NR

⋅ (IM1
⊗ [G ×2 (Ĥ +∆Hk)T]T(1))

+P (1)M1,M1+M2,NR
⋅ (IM1+M2

⊗ [G ×1 (Ĥ1 +∆H1,k)T]T(2)) ⋅ J1 (E.10)

F
(2)
k
=P
(1)
M1,M1+M2,NR

⋅ (IM1+M2
⊗ [G ×1 (Ĥ1 +∆H1,k)T]T(2)) ⋅ J2 (E.11)

J1 =

⎡⎢⎢⎢⎢⎣
IM1⋅MR

0M2⋅MR×M1⋅MR

⎤⎥⎥⎥⎥⎦ J2 =

⎡⎢⎢⎢⎢⎣
0M1⋅MR×M2⋅MR

IM2⋅MR

⎤⎥⎥⎥⎥⎦ .
Next, we insert (E.9) as well as (15.31) and (15.32) into the cost function (E.6) for the (k+1)-th
iteration which yields

J(∆Hk+1) =
XXXXXXXXXXXXXXXXX

⎡⎢⎢⎢⎢⎢⎢⎣
vec{Rk}

κ1 ⋅ vec{∆H1,k}
κ2 ⋅ vec{∆H2,k}

⎤⎥⎥⎥⎥⎥⎥⎦
+F k ⋅

⎡⎢⎢⎢⎢⎣
vec{∆∆H1,k}
vec{∆∆H2,k}

⎤⎥⎥⎥⎥⎦
XXXXXXXXXXXXXXXXX

2

2

F k =

⎡⎢⎢⎢⎢⎢⎢⎣
−F (1)

k
−F (2)

k

κ1 ⋅ IM1⋅MR
0M1⋅MR×M2⋅MR

0M2⋅MR×M1⋅MR
κ2 ⋅ IM2⋅MR

⎤⎥⎥⎥⎥⎥⎥⎦
. (E.12)

Consequently, the cost function has been rewritten as a linear least squares problem in the

update terms ∆∆H1,k and ∆∆H2,k. Therefore, the least squares solution of (E.12) with

respect to these terms is given by

⎡⎢⎢⎢⎢⎣
vec{∆∆H1,k}
vec{∆∆H2,k}

⎤⎥⎥⎥⎥⎦ = −F
+

k ⋅
⎡⎢⎢⎢⎢⎢⎢⎣

vec{Rk}
κ1 ⋅ vec{∆H1,k}
κ2 ⋅ vec{∆H2,k}

⎤⎥⎥⎥⎥⎥⎥⎦
. (E.13)

E.2. Proof of Proposition 16.1.1

We want to show that the choice of γ given in (16.6) provides a transmit power that is upper-

bounded by PT,R. To this end we start from the average power transmitted by the relay given

by (16.5) which is replicated here for convenience

E{∥r̄∥22} = γ2 ⋅ trace{G ⋅H(f)1 ⋅R1 ⋅H(f)H1 ⋅GH +G ⋅H(f)2 ⋅R2 ⋅H(f)H2 ⋅GH +G ⋅RN,R ⋅GH}
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Since the trace is linear we can break this expression into the sum of three trace operations

E{∥r̄∥22} = γ2 ⋅ trace{G ⋅H(f)1 ⋅R1 ⋅H(f)H1 ⋅GH} + γ2 ⋅ trace{G ⋅H(f)2 ⋅R2 ⋅H(f)H2 ⋅GH}
+ γ2 ⋅ trace{G ⋅RN,R ⋅GH} (E.14)

Next, we rearrange the first two terms using the rule trace{A ⋅B} = trace{B ⋅A} and obtain

E{∥r̄∥22} = γ2 ⋅ trace{R1 ⋅H(f)H1 ⋅GH ⋅G ⋅H(f)1 } + γ2 ⋅ trace{R2 ⋅H(f)H2 ⋅GH ⋅G ⋅H(f)2 }
+ γ2 ⋅ trace{G ⋅RN,R ⋅GH} (E.15)

To upper-bound (E.15) we apply the bound trace{A ⋅B} ≤ trace{A} ⋅ trace{B}. Since

trace{Ri} = PT,i this step yields

E{∥r̄∥22} = γ2 ⋅ PT,1 ⋅ trace{H(f)H1 ⋅GH ⋅G ⋅H(f)1 } + γ2 ⋅ PT,2 ⋅ trace{H(f)H2 ⋅GH ⋅G ⋅H(f)2 }
+ γ2 ⋅ trace{G ⋅RN,R ⋅GH} (E.16)

Applying the rule trace{A ⋅B} = trace{B ⋅A} again, we have

E{∥r̄∥22} ≤ γ2 ⋅ PT,1 ⋅ trace{G ⋅H(f)1 ⋅H(f)H1 ⋅GH} + γ2 ⋅ PT,2 ⋅ trace{G ⋅H(f)2 ⋅H(f)H2 ⋅GH}
+ γ2 ⋅ trace{G ⋅RN,R ⋅GH}
= γ2 ⋅ trace{PT,1 ⋅G ⋅H(f)1 ⋅H(f)H1 ⋅GH + PT,2 ⋅G ⋅H(f)2 ⋅H(f)H2 ⋅GH +G ⋅RN,R ⋅GH}

(E.17)

Finally, substituting γ from (16.6) into (E.17) we have

E{∥r̄∥22} ≤ PT,R (E.18)

which proves the proposition.

E.3. Proof of Proposition 16.1.2

We want to show that the relay’s transmit power using γ from (16.6) converges to
PT,R

min{MU,MR}
for high SNRs if the users apply spatial multiplexing to transmit their data. We begin with

the case where both effective channels H
(e)
1,2 and H

(e)
2,1 are square and full rank, which implies

MU ≤MR. In this case, the capacity-achieving power distribution across the MU eigenmodes

approaches a uniform power allocation as the SNR approaches infinity. Consequently, the
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input covariance matrices converge to a scaled identity, i.e., limPN→0Ri =
PT,i

MU
⋅ IMU

, since

trace{Ri} = PT,i. Inserting the limiting input covariance matrices into (16.5) we obtain

lim
PN→0

E{∥r̄∥22} = γ2 ⋅ trace{PT,1

MU

⋅G ⋅H(f)
1
⋅H(f)H

1
⋅GH + PT,2

MU

⋅G ⋅H(f)
2
⋅H(f)H

2
⋅GH +G ⋅RN,R ⋅GH}

=
γ2⋅
MU

trace{PT,1 ⋅G ⋅H(f)1
⋅H(f)H

1
⋅GH + PT,2 ⋅G ⋅H(f)

2
⋅H(f)H

2
⋅GH +G ⋅RN,R ⋅GH} .

If we choose γ according to (16.6) we have

lim
PN→0

E{∥r̄∥22} = PT,R

MU

⋅ trace{PT,1 ⋅G ⋅H(f)1
⋅H(f)H

1
⋅GH + PT,2 ⋅G ⋅H(f)2

⋅H(f)H
2
⋅GH +G ⋅RN,R ⋅GH}

trace{PT,1 ⋅G ⋅H(f)1
⋅H(f)H

1
⋅GH + PT,2 ⋅G ⋅H(f)2

⋅H(f)H
2
⋅GH +G ⋅RN,R ⋅GH}

=
PT,R

MU

(E.19)

which proves the proposition for the first case.

For MR < MU the effective channel matrices become rank-deficient, since their rank is at

most1 MR. For rank(H(e)1,2) = rank(H(e)2,1) = MR, the capacity-achieving transmit covariance

matrices become Ri =
PT,i

MR
⋅V [s]3−i,iV [s]H3−i,i, where V

[s]
j,i represents the MR dominant right singular

vectors of the effective channel matrix H
(e)
j,i . Consequently, it converges to a scaled version of

the projection matrix onto the row space of H
(e)
j,i . However, since H

(e)
j,i =H

(b)
j ⋅G ⋅H(f)i , the

row space of H
(e)
j,i coincides with the row space of H

(f)
i . Therefore we have

lim
PN→0

trace{G ⋅H(f)1 ⋅R1 ⋅H(f)H1 ⋅GH} = lim
PN→0

trace{H(f)H1 ⋅GH ⋅G ⋅H(f)1 ⋅R1} (E.20)

= trace{H(f)H1 ⋅GH ⋅G ⋅H(f)1 } ⋅ PT,1

MR

=
1

MR

⋅ trace{PT,1 ⋅G ⋅H(f)1 ⋅H(f)H1 ⋅GH} (E.21)

where in the first step we have used the identity trace{A ⋅B} = trace{B ⋅A} and in the second

step the fact that R1 converges to a scaled version of the projection matrix onto the row space

of H
(f)
1 , which leaves the matrix inside the trace unaltered, except for the scaling. Proceeding

in the same manner with the second term we eventually find

lim
PN→0

E{∥r̄∥22} = 1

MR

⋅ γ2 ⋅ trace{PT,1 ⋅G ⋅H(f)
1
⋅H(f)H

1
⋅GH + PT,2 ⋅G ⋅H(f)2

⋅H(f)H
2
⋅GH +G ⋅RN,R ⋅GH}

1It is lower only if the channel matrices have rank-deficiencies (which happens with probability zero if channels
are drawn from continuous distributions) or the relay amplification matrix is rank-deficient. However, in this
case, the bound becomes simply tighter, as we can replace min{MU,MR} with the actual rank of the effective
channel matrices. The proof still follows the same lines as the one presented here.
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=
PT,R

MR

⋅ trace{PT,1 ⋅G ⋅H(f)
1
⋅H(f)H

1
⋅GH + PT,2 ⋅G ⋅H(f)2

⋅H(f)H

2
⋅GH +G ⋅RN,R ⋅GH}

trace{PT,1 ⋅G ⋅H(f)
1
⋅H(f)H

1
⋅GH + PT,2 ⋅G ⋅H(f)2

⋅H(f)H

2
⋅GH +G ⋅RN,R ⋅GH}

=
PT,R

MR

(E.22)

which proves the proposition for the second case.

E.4. Proof of Lemma 16.1.4

Let us start with the power of the desired signal components. For the received power at UT1

PR,1, we expand (16.9) and obtain

PR,1 = E{∣h(e)1,2 ⋅ x2∣2} = ∣h(e)1,2 ∣2 ⋅E{∣x2∣2}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PT,2

= ∣h(b)T1 ⋅Gγ ⋅h(f)2 ∣2 ⋅ PT,2

= h
(b)T
1 ⋅Gγ ⋅h(f)2 ⋅h(f)H2 ⋅GH

γ ⋅h(b)∗1 ⋅ PT,2, (E.23)

where in the last step we have used the fact that ∣z∣2 = z ⋅z∗ for arbitrary z ∈ C. Equation (E.23)

is quadratic in the elements of Gγ . To transform it into a canonical quadratic form in gγ =

vec{Gγ} we can directly apply (3.41) and obtain

PR,1 = vec{Gγ}H ⋅ [(h(f)2 ⋅h(f)H2 )T ⊗ (h(b)∗1 ⋅h(b)T1 )] ⋅ vec{Gγ} ⋅ PT,2

= gHγ ⋅ [(h(f)2 ⋅h(f)H2 )⊗ (h(b)1 ⋅h(b)H1 )]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K2,1

⋅gγ ⋅ PT,2, (E.24)

which shows (16.10). The corresponding expansion of (16.9) in terms of PR,2 yields (16.11)

using similar arguments.

Concerning the power of the effective noise component ñi, we expand P̃N,i = E{∣ñi∣2} and

find

P̃N,i = E{∣h(b)Ti ⋅Gγ ⋅nR + ni∣2}
= E{h(b)Ti ⋅Gγ ⋅nR ⋅nH

R ⋅GH
γ ⋅h(b)∗i } +E{∣ni∣2}

= h
(b)T
i ⋅Gγ ⋅E{nR ⋅nH

R}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RN,R

⋅GH
γ ⋅h(b)∗i +E{∣ni∣2}´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PN,i

= h
(b)T
i ⋅Gγ ⋅RN,R ⋅GH

γ ⋅h(b)∗i + PN,i, (E.25)
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where in the first step we have used the fact that the noise at the relay is independent of the

noise at the terminals. As before, we can apply (3.41) to transform the first term of (E.25)

into a canonical quadratic form and obtain

P̃N,i = g
H
γ ⋅ [RT

N,R ⊗ (h(b)∗i ⋅h(b)Ti )] ⋅ gγ + PN,i

= gHγ ⋅ [RN,R ⊗ (h(b)i ⋅h(b)Hi )]T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ji

⋅gγ + PN,i, (E.26)

which shows (16.12). Finally, concerning the transmit power of the relay, we expand E{∥r̄∥22}
by inserting (14.2). We obtain

E{∥r̄∥22} = E{∥Gγ ⋅ r∥22} = E{rH ⋅GH
γ ⋅Gγ ⋅ r2} = E{trace{Gγ ⋅ r ⋅ rH ⋅GH

γ }}
= trace{Gγ ⋅E{r ⋅ rH} ⋅GH

γ } = trace{Gγ ⋅RR ⋅GH
γ } , (E.27)

where we have applied the identity xH ⋅ x = trace{x ⋅xH}, which holds for arbitrary x ∈ CN .

Equation (E.27) is a special case of (3.40) and can hence be transformed into a canonical

quadratic form as well. Applying (3.42) for R =RR and X =Gγ we directly obtain

E{∥r̄∥22} = gHγ ⋅ (RT
R ⊗ IMR

) ⋅ gγ , (E.28)

which shows (16.13).

E.5. Derivation of ANOMAX

The ANOMAX solution is easily derived via algebraic manipulation of the cost function (16.16)

which is restated here for convenience

G = argmax
G∣∥G∥F=1

(∥H(b)1 ⋅G ⋅H(f)2 ∥2F + ∥H(b)2 ⋅G ⋅H(f)1 ∥2F) . (E.29)

Since ∥X∥F = ∥vec{X}∥2 for any matrix X we can rewrite (E.29) in terms of g = vec{G}.
Applying the rule vec{A ⋅X ⋅BT} = (B ⊗A) ⋅ vec{X} (cf. equation 3.7), we obtain

g = argmax
g∣∥g∥2=1

(∥(H(f)T2 ⊗H(b)1 ) ⋅ g∥22 + ∥(H(f)T1 ⊗H(b)2 ) ⋅ g∥22) . (E.30)
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Expanding the two-norms via ∥x∥22 = xH ⋅x we get

g = argmax
g∣∥g∥2=1

(gH ⋅ (H(f)T2 ⊗H(b)1 )H ⋅ (H(f)T2 ⊗H(b)1 ) ⋅ g
+gH ⋅ (H(f)T1 ⊗H(b)2 )H ⋅ (H(f)T1 ⊗H(b)2 ) ⋅ g) (E.31)

= argmax
g∣∥g∥2=1

gH ⋅ [(H(f)∗2 ⊗H(b)H1 ) ⋅ (H(f)T2 ⊗H(b)1 ) + (H(f)∗1 ⊗H(b)H2 ) ⋅ (H(f)T1 ⊗H(b)2 )] ⋅ g
= argmax

g∣∥g∥2=1
gH ⋅ [(H(f)∗2 H

(f)T
2 )⊗ (H(b)H1 ⋅H(b)1 ) + (H(f)∗1 H

(f)T
1 )⊗ (H(b)H2 ⋅H(b)2 )]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

RANO

⋅g

= argmax
g∣∥g∥2=1

gH ⋅RANO ⋅ g (E.32)

where from the second to the third step we have used the rule (A⊗B) ⋅ (C ⊗D) = (A ⋅C)⊗(B ⋅D). As shown in Section 3.2, the solution to (E.32) is given by eigenvector of RANO

which corresponds to its largest eigenvalue, scaled to norm one. This proves the first form of

ANOMAX.

To prove the second and the third form it is sufficient to see that (KT
ANO)H ⋅KT

ANO =RANO,

where KANO is defined in (16.19). Therefore, the eigenvectors of RANO coincide with the

right singular vectors of KT
ANO (cf. Section 3.2, equation (3.51)) and the conjugates of the left

singular vectors of KANO.

E.6. Proof of Proposition 16.3.1

Here we would like to show that DCM and ANOMAX provide the identical relay amplifi-

cation matrix for the special case of single antenna terminals M1 = M2 = 1. For notational

convenience, we consider the case where reciprocity holds, such that h
(f)
1 = h

(b)T
1 = h1 and

h
(f)
2 = h

(b)T
2 = h2. The extension to the non-reciprocal case follows the same lines as this

proof. In the reciprocal case, the matrix RANO takes the following simpler form

RANO = (h2 ⋅hH
2 )T ⊗ (h1 ⋅hH

1 )T + (h1 ⋅hH
1 )T ⊗ (h2 ⋅hH

2 )T (E.33)

To prove proposition 16.3.1 we first require the following lemma:

Lemma E.6.1. If the channel vectors are not colinear, then the matrix RANO has an ordered
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eigendecomposition given by

RANO = [q1, q2] ⋅
⎡⎢⎢⎢⎢⎣
λ1 0

0 λ2

⎤⎥⎥⎥⎥⎦ ⋅ [q1, q2]
H
, (E.34)

where the eigenvectors qn and the eigenvalues λn are

q1 =
1√

2 ⋅√∥h1∥22 ⋅ ∥h2∥22 + ∣hH
1 ⋅h2∣2 ⋅ ( (h

∗

1 ⊗h∗2) + (h∗2 ⊗h∗1) ) (E.35)

q2 =
1√

2 ⋅√∥h1∥22 ⋅ ∥h2∥22 − ∣hH
1 ⋅h2∣2 ⋅ ( (h

∗

1 ⊗h∗2) − (h∗2 ⊗h∗1) ) (E.36)

λ1 = ∥h1∥22 ⋅ ∥h2∥22 + ∣hH
1 ⋅h2∣2 (E.37)

λ2 = ∥h1∥22 ⋅ ∥h2∥22 − ∣hH
1 ⋅h2∣2 . (E.38)

Otherwise, the eigendecomposition reduces to RANO = q1 ⋅ λ1 ⋅ qH1 .
Proof. To prove this lemma we require the following steps:

1. Show that RANO is at most rank two. This is obvious from (E.33): RANO is the sum of

two matrices which are both rank-one, since the Kronecker product of rank-one matrices

is again rank-one.

2. Show that RANO ⋅ qn = λn ⋅ qn for n = 1,2. For instance, for n = 1 this is achieved by

multiplying (E.33) and (E.35) out and simplifying the four resulting cross terms via the

rule (A⊗B) ⋅ (C ⊗D) = (A ⋅C)⊗ (B ⋅D).
3. Show that q1 and q2 are orthonormal, i.e, qHk ⋅ qℓ = δ[k − ℓ]. This step requires insert-

ing (E.35) and (E.36) and simplifying the result as in the previous step.

4. Show that λ1 ≥ λ2. This is again obvious since

∥h1∥22 ⋅ ∥h2∥22 + ∣hH
1 ⋅h2∣2 ≥ ∥h1∥22 ⋅ ∥h2∥22 − ∣hH

1 ⋅h2∣2
⇔ ∣hH

1 ⋅h2∣2 ≥ − ∣hH
1 ⋅h2∣2⇔ 2 ∣hH

1 ⋅h2∣2 ≥ 0 (E.39)

5. For the special case of colinear channels, λ2 becomes zero and RANO reduces to a rank-

one matrix. This is also seen from (E.33) since the two rank-one matrices are identical

in this case.
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Lemma E.6.1 provides a lot of insight into the algebraic structure of the ANOMAX solution

for the single-antenna case. Since ANOMAX selects g as the dominant eigenvector ofRANO we

can directly conclude that it will be equal to q1. However, the Dual Channel Matching (DCM)

solution for the general case, which reads as

GDCM =H
(b)H
2 ⋅H(f)H1 +H(b)H1 ⋅H(f)H2 (E.40)

simplifies to

GDCM = h
∗

2 ⋅hH
1 +h∗1 ⋅hH

2 (E.41)

for the single-antenna reciprocal case which is discussed here. Consequently, vec{GDCM} =(h∗1 ⊗h∗2) + (h∗2 ⊗h∗1) which is a scaled version of q1. This already proves proposition 16.3.1.

We additionally observe that the maximum value of the ANOMAX cost function is equal

to λ1. This shows that ANOMAX is most efficient for the case of colinear channels and

least efficient for the case of orthogonal channels where hH
1 ⋅ h2 = 0. In fact, for this special

case we have λ1 = λ2 so instead of q1 we could also choose q2 or any affine combination of

w ⋅q1 + (1−w) ⋅q2 for w ∈ R[0,1]. However, this has no impact on the value of the cost function

as all these linear combinations yield the same value λ1.

E.7. Proof of Proposition 16.3.2

For β = 1, the cost function for ANOMAX simplifies into

Gopt = argmax
G∣∥G∥F=1

∥H(b)1 ⋅G ⋅H(f)2 ∥2F . (E.42)

Let the SVDs of H
(b)
1 and H

(f)
2 be given by

H
(b)
1 = U

(b)
1 ⋅Σ(b)1 ⋅V (b)H1 (E.43)

H
(f)
2 = U

(f)
2 ⋅Σ(f)2 ⋅V (f)H2 , (E.44)

(E.45)

where U
(b)
1 ∈ C

M1×min{M1,MR}, Σ(b)1 ∈ C
min{M1,MR},min{M1,MR}, V (b)1 ∈ C

MR×min{M1,MR}, U (f)2 ∈

C
MR×min{M2,MR}, Σ(f)2 ∈ C

min{M2,MR},min{M2,MR}, and V (f)2 ∈ C
M2×min{M2,MR}. Then, G can
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be written as

G = V
(b)
1 ⋅Γ ⋅U (f)H2 =

min{M1,MR}
∑
k=1

min{M2,MR}
∑
ℓ=1

γk,ℓ ⋅ v(b)1,k
⋅u(f)H

2,ℓ
(E.46)

without loss of generality, since any left singular vector orthogonal to V
(b)
1 and any right

singular vector orthogonal to U
(f)H
2 does not contribute to the cost function. Here, γk,ℓ =[G](k,ℓ) and the vectors v

(b)
1,k

and u
(f)
2,ℓ

represent the k-th and the ℓ-th column of V
(b)
1 and

U
(f)
2 , respectively. Note that Γ is of size min{M1,MR} ×min{M2,MR} and the constraint∥G∥2F = 1 translates to ∥Γ∥2F = ∑k,ℓ ∣γk,ℓ∣2 = 1. Inserting this form of G into the cost function,

we have

∥U (b)1 ⋅Σ(b)1 ⋅Γ ⋅Σ(f)2 ⋅V (f)H2 ∥2
F
= ∥Σ(b)1 ⋅Γ ⋅Σ(f)2 ∥2F
=

min{M1,MR}
∑
k=1

min{M2,MR}
∑
ℓ=1

∣γk,ℓ∣2 ⋅ (σ(b)1,k
⋅ σ(f)

2,ℓ
)2 , (E.47)

where σ
(b)
1,k

are the singular values ofH
(b)
1 and σ

(f)
2,ℓ

are the singular values ofH
(f)
2 . Since both

singular value profiles are ordered and we have the constraint ∑k,ℓ ∣γk,ℓ∣2 = 1 it is best to set

γ1,1 = 1 and γk,ℓ = 0 for k > 1 or ℓ > 1. Consequently, Gopt is given by

Gopt = v
(b)
1,1 ⋅u(f)H2,1 . (E.48)

This concludes the proof of the proposition for β = 1. For β = 0, the proof proceeds analogously.

E.8. Proof of Proposition 16.4.1

The first obvious step is that the factor 1/2 as well as the log2 function can be dropped, since

1/2 log2(x) represents a monotonically increasing function for x > 0. The cost function can

then be written as

J(g) = (1 + PR,1

P̃N,1

) ⋅ (1 + PR,2

P̃N,2

) (E.49)

=
P̃R,1

P̃N,1

⋅ P̃R,2

P̃N,2

, (E.50)
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where the desired signal power PR,i and the noise power P̃N,i at UTi, i = 1,2 are defined in

Lemma 16.1.4. Now, the main trick to transform this problem into (16.32) is to incorporate

the power constraint PT,R = g
H ⋅Q ⋅ g ≤ Pmax

T,R into the cost function. To this end, we need the

following lemma:

Lemma E.8.1. The vector gopt maximizing the cost function J(g) satisfies the power con-

straint with equality, i.e., gHopt ⋅Q ⋅ gopt = Pmax
T,R .

Proof. Firstly, inserting (16.10), (16.11), and (16.12) into (E.49), we have

J(g) = (1 + gH ⋅K2,1 ⋅ g ⋅ PT,2

gH ⋅ J1 ⋅ g + PN,1

) ⋅ (1 + gH ⋅K1,2 ⋅ g ⋅ PT,1

gH ⋅ J2 ⋅ g + PN,2

) . (E.51)

Based on this form of the cost function we can prove the lemma by contradiction. Assume

that an optimal gopt exists which satisfies gHopt ⋅Q ⋅ gopt < Pmax
T,R . Then, we can find a constant

c > 1, such that ḡopt = c ⋅ gopt satisfies ḡHopt ⋅Q ⋅ ḡopt = Pmax
T,R . However, inserting ḡopt into the

cost function J(g) we have

J(ḡopt) = ⎛⎝1 +
c2 ⋅ gHopt ⋅K2,1 ⋅ gopt ⋅ PT,2

c2 ⋅ gHopt ⋅ J1 ⋅ gopt + PN,1

⎞⎠ ⋅ ⎛⎝1 +
c2 ⋅ gHopt ⋅K1,2 ⋅ gopt ⋅ PT,1

c2 ⋅ gHopt ⋅ J2 ⋅ gopt + PN,2

⎞⎠
=
⎛⎝1 +

gHopt ⋅K2,1 ⋅ gopt ⋅ PT,2

gHopt ⋅ J1 ⋅ gopt + PN,1

c2

⎞⎠ ⋅ ⎛⎝1 +
gHopt ⋅K1,2 ⋅ gopt ⋅ PT,1

gHopt ⋅ J2 ⋅ gopt + PN,2

c2

⎞⎠ (E.52)

which is monotonically increasing in c since PN,i > 0. Since c > 1, we therefore have J(ḡopt) >
J(gopt), contradicting the assumption that gopt was optimal. Hence, our assumption was false,

which proves the lemma.

Applying this lemma to the maximization of J(g) subject to PT,R ≤ P
max
T,R it becomes evident

that the inequality constraint can be replaced by an equality constraint. Hence, we have

gHopt ⋅Q ⋅ gopt = Pmax
T,R . (E.53)

Using (E.53) and (16.12), we can express P̃N,i as

P̃N,i = g
H
opt ⋅ J i ⋅ gopt + PN,i ⋅ g

H
opt ⋅Q ⋅ gopt

Pmax
T,R

= gHopt ⋅ ⎛⎝J i + PN,i

Pmax
T,R

⋅Q⎞⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J̃i

⋅gopt. (E.54)
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Moreover, since P̃R,i
.
= PR,i + P̃N,i we obtain by combining (E.53) with (16.10) and (16.11)

P̃R,1 = g
H
opt ⋅K2,1 ⋅ gopt ⋅ PT,2 + gHopt ⋅ J̃1 ⋅ gopt = gHopt ⋅ (K2,1 ⋅ PT,2 + J̃1) ⋅ gopt = gHopt ⋅ K̃1 ⋅ gopt

P̃R,2 = g
H
opt ⋅K1,2 ⋅ gopt ⋅ PT,1 + gHopt ⋅ J̃2 ⋅ gopt = gHopt ⋅ (K1,2 ⋅ PT,1 + J̃2) ⋅ gopt = gHopt ⋅ K̃2 ⋅ gopt.

Inserting these intermediate results into the cost function (E.50), our equivalent optimization

problem can be stated as

gopt = argmax
g∣gH

⋅Q⋅g=Pmax
T,R

J(g)
J(g) = gH ⋅ K̃1 ⋅ g

gH ⋅ J̃1 ⋅ g ⋅
gH ⋅ K̃2 ⋅ g
gH ⋅ J̃2 ⋅ g . (E.55)

The final step to showing the proposition is to realize that J(g) is in fact a homogeneous

function in the norm of g, i.e., J(g) = J(c ⋅ g) ∀c ≠ 0. Therefore, we can drop the equality

constraint as well and solve the unconstrained maximization problem provided that the result-

ing gopt is properly rescaled to satisfy gHopt ⋅Q ⋅ gopt = Pmax
T,R . This concludes the proof of the

proposition.

E.9. Lowering the complexity for RAGES

For white noise at the relay and reciprocal channels, the rate-optimal relay amplification matrix

has the form G =H∗ ⋅B ⋅HH, as shown in [ZLCC09]2, where H = [h1 h2] ∈ CMR×2.

Via (3.7) we find that the vector g = vec{G} can then be written as

g = vec{G} = vec{H∗ ⋅B ⋅HH} = (H∗ ⊗H∗) ⋅ vec{B}´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
b

= (H ⊗H)∗ ⋅ b (E.56)

In order to proceed we require the following lemma:

Lemma E.9.1. The following identities are true

K̃1 ⋅ (H ⊗H)∗ = (H ⊗H)∗ ⋅C1

K̃2 ⋅ (H ⊗H)∗ = (H ⊗H)∗ ⋅C2

2Note that [ZLCC09] uses a different parametrization. The authors write G = U∗ ⋅B ⋅UH, where U ∈ CM×2

denote the two left singular vectors of the matrix H. However, since H = U ⋅ T for a non-singular matrix
T ∈ C2×2, this is equivalent to the form we use here.
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J̃1 ⋅ (H ⊗H)∗ = (H ⊗H)∗ ⋅D1

J̃1 ⋅ (H ⊗H)∗ = (H ⊗H)∗ ⋅D2,

(E.57)

where the matrices C1,C2,D1,D2 ∈ C
2×2 are given by

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PN,Rα
2
1 + ρ1β1 PN,Rα2,1 ρ1PT,1α2,1 0

0 ρ1β1 0 ρ1PT,1α2,1

PT,2α1,2(ρ1 + α2
1) PT,2α

2
1α

2
2 (ρ1 + α2

1)β2 α2,1β2

0 ρ1PT,2α1,2 0 ρ1β2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2β1 0 ρ2PT,1α2,1 0

α1,2β1 (ρ2 + α2
2)β1 PT,1α

2
1α

2
2 PT,1α2,1(ρ2 + α2

2)
ρ2PT,2α1,2 0 ρ2β2 0

0 ρ2PT,2α1,2 PN,Rα1,2 PN,Rα
2
2 + ρ2β2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PN,Rα
2
1 + ρ1β1 PN,Rα2,1 ρ1PT,1α2,1 0

0 ρ1β1 0 ρ1PT,1α2,1

ρ1PT,2α1,2 0 PN,Rα
2
1 + ρ1β2 PN,Rα2,1

0 ρ1PT,2α1,2 0 ρ1β2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ2β1 0 ρ2PT,1α2,1 0

PN,Rα1,2 PN,Rα
2
2 + ρ2β1 0 ρ2PT,1α2,1

ρ2PT,2α1,2 0 ρ2β2 0

0 ρ2PT,2α1,2 PN,Rα1,2 PN,Rα
2
2 + ρ2β2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
using the short-hand notations α2

k = ∥hk∥22, αk,ℓ = h
H
k ⋅ hℓ, βk = PT,kα

2
k + PN,R, and ρk =

PN,k

Pmax
T,R

for k, ℓ ∈ {1,2}
Proof. This lemma is easily shown by inserting the definitions of K̃n and J̃n shown in Propo-

sition 16.4.1. For instance, K̃1 is defined as a scalar combination of the matrices K2,1,

J1, and Q. However, as evident from their definition in Lemma 16.1.4, for the special

case treated here, these three matrices are linear combinations of (h2 ⊗h1)∗ ⋅ (h2 ⊗h1)T,(IMR
⊗h1)∗ ⋅ (IMR

⊗h1)T, (h1 ⊗ IMR
)∗ ⋅ (h1 ⊗ IMR

)T, (h2 ⊗ IMR
)∗ ⋅ (h2 ⊗ IMR

)T, and IM2
R
.

Therefore, the product with H∗ ⊗H∗ yields a matrix for which each column is a linear com-

bination of h∗k ⊗h∗ℓ for k, ℓ = 1,2. Determining the coefficients of these linear combinations is

straightforward.

Inserting (E.56) into the generalized eigenproblem for RAGES from (16.34) and applying
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Lemma E.9.1 we find

(K̃1 + ρsig ⋅ K̃2) ⋅ (H ⊗H)∗ ⋅ b = P̃R,1

P̃N,1

⋅ (J̃1 + ρnoi ⋅ J̃2) ⋅ (H ⊗H)∗ ⋅ b
(K̃1 ⋅ (H ⊗H)∗ + ρsig ⋅ K̃2 ⋅ (H ⊗H)∗) ⋅ b = P̃R,1

P̃N,1

⋅ (J̃1 ⋅ +ρnoi ⋅ J̃2 ⋅ (H ⊗H)∗) ⋅ b
(H ⊗H)∗ ⋅ (C1 + ρsig ⋅C2) ⋅ b = P̃R,1

P̃N,1

⋅ (H ⊗H)∗ ⋅ (D1 + ρnoi ⋅D2) ⋅ b. (E.58)

Therefore, the necessary condition for g = (H ⊗H)∗ ⋅b to be optimal is equivalent to the con-

dition (E.58) for b. Obviously, for (E.58) to be satisfied, b must be a generalized eigenvector of(C1 + ρsig ⋅C2) ∈ C2×2 and (D1 + ρnoi ⋅D2) ∈ C2×2. To see this, we simply multiply (E.58) from

the left-hand side with the pseudo-inverse of (H ⊗H)∗ ⋅ (D1 + ρnoi ⋅D2). If (D1 + ρnoi ⋅D2)
is invertible3 this yields

(D1 + ρnoi ⋅D2)−1 ⋅ (C1 + ρsig ⋅C2) ⋅ b = P̃R,1

P̃N,1

⋅ b. (E.59)

Therefore, instead of computing the generalized eigenvectors of theM2
R×M2

R matrices K̃1+ρsig ⋅
K̃2 and J̃1+ρnoi ⋅ J̃2 shown in (16.34), we can resort to computing the generalized eigenvectors

of the 2×2 matrices C1+ρsig ⋅C2 and D1+ρnoi ⋅D2 shown in (E.59), which significantly lowers

the computational complexity. The computation of C1, C2, D1, D2 requires only linear

complexity in MR, all subsequent computations are independent of MR.

3It can be verified that this matrix has full rank for finite SNRs. This is also reasonable since otherwise we
would get infinite generalized eigenvalues which would correspond to an infinite sum-rate.
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